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tobac

tobac is a Python package to identify, track and analyze clouds in different types of gridded datasets, such as 3D model
output from cloud-resolving model simulations or 2D data from satellite retrievals.

The software is set up in a modular way to include different algorithms for feature identification, tracking, and analyses.
tobac is also input variable agnostic and doesn’t rely on specific input variables, nor a specific grid to work.

In the current implementation, individual features are identified as either maxima or minima in a two-dimensional
time-varying field (see Feature Detection Basics). An associated volume can then be determined using these features
with a separate (or identical) time-varying 2D or 3D field and a threshold value (see Segmentation). The identified
objects are linked into consistent trajectories representing the cloud over its lifecycle in the tracking step. Analysis
and visualization methods provide a convenient way to use and display the tracking results.

Version 1.2 of tobac and some example applications are described in a peer-reviewed article in Geoscientific Model
Development as:

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.:
tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev.,
12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019.

The project is currently being extended by several contributors to include additional workflows and algorithms using
the same structure, syntax, and data formats.
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CHAPTER 1

Installation

tobac works with Python 3 installations.

The easiest way is to install the most recent version of tobac via conda or mamba and the conda-forge channel:

conda install -c conda-forge tobac or mamba install -c conda-forge tobac

This will take care of all necessary dependencies and should do the job for most users. It also allows for an easy update
of the installation by

conda update -c conda-forge tobac mamba update -c conda-forge tobac

You can also install conda via pip, which is mainly interesting for development purposes or using specific development
branches for the Github repository.

The following python packages are required (including dependencies of these packages):

numpy, scipy, scikit-image, pandas, pytables, matplotlib, iris, xarray, cartopy, trackpy

If you are using anaconda, the following command should make sure all dependencies are met and up to date:

conda install -c conda-forge -y numpy scipy scikit-image pandas pytables matplotlib
→˓iris xarray cartopy trackpy

You can directly install the package directly from github with pip and either of the two following commands:

pip install --upgrade git+ssh://git@github.com/tobac-project/tobac.
git

pip install --upgrade git+https://github.com/tobac-project/tobac.git

You can also clone the package with any of the two following commands:

git clone git@github.com:tobac-project/tobac.git

git clone https://github.com/tobac-project/tobac.git

and install the package from the locally cloned version (The trailing slash is actually necessary):

pip install --upgrade tobac/
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CHAPTER 2

Data input

Input data for tobac should consist of one or more fields on a common, regular grid with a time dimension and two
or more spatial dimensions. The input data can also include latitude and longitude coordinates, either as 1-d or 2-d
variables depending on the grid used.

Interoperability with xarray is provided by the convenient functions allowing for a transformation between the two
data types. xarray DataArays can be easily converted into iris cubes using xarray’s to_iris() method, while the Iris
cubes produced as output of tobac can be turned into xarray DataArrays using the from_iris() method.

For the future development of the next major version of tobac (v2.0), we are moving the basic data structures from
Iris cubes to xarray DataArrays for improved computing performance and interoperability with other open-source
sorftware packages, including the Pangeo project (https://pangeo.io/).

The output of the different analysis steps in tobac are output as either pandas DataFrames in the case of one-
dimensional data, such a lists of identified features or feature tracks or as Iris cubes in the case of 2D/3D/4D fields
such as feature masks. Note that the dataframe output from tracking is a superset of the features dataframe.

For information on feature detection output, see Feature Detection Output. For information on tracking output, see
Tracking Output.

Note that in future versions of tobac, it is planned to combine both output data types into a single hierarchical data
structure containing both spatial and object information. Additional information about the planned changes can be
found in the v2.0-dev branch of the main tobac repository (https://github.com/tobac-project/tobac), as well as the
tobac roadmap (https://github.com/tobac-project/tobac-roadmap.
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CHAPTER 3

Analysis

tobac provides several analysis functions that allow for the calculation of important quantities based on the tracking
results. This includes the calculation of properties such as feature lifetimes and feature areas/volumes, but also allows
for a convenient calculation of statistics for arbitrary fields of the same shape as as the input data used for the tracking
analysis.
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CHAPTER 4

Plotting

tobac provides functions to conveniently visualise the tracking results and analyses.
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CHAPTER 5

Handling Large Datasets

Often, one desires to use tobac to identify and track features in large datasets (“big data”). This documentation
strives to suggest various methods for doing so efficiently. Current versions of tobac do not allow for out-of-memory
computation, meaning that these strategies may need to be employed for both computational and memory reasons.

5.1 Split Feature Detection

Current versions of threshold feature detection (see Feature Detection Basics) are time independent, meaning that one
can parallelize feature detection across all times (although not across space). tobac provides the tobac.utils.
combine_tobac_feats() function to combine a list of dataframes produced by a parallelization method (such
as jug or multiprocessing.pool) into a single combined dataframe suitable to perform tracking with.

11
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CHAPTER 6

Example notebooks

tobac is provided with a set of Jupyter notebooks that show examples of the application of tobac for different types of
datasets.

The notebooks can be found in the examples folder in the the repository. The necessary input data for these examples
is avaliable on zenodo: www.zenodo.org/. . . and can be downloaded automatically by the Jupyter notebooks.

The examples currently include four different applications of tobac: 1. Tracking of scattered convection based on
vertical velocity and condensate mixing ratio for 3D cloud-resolving model output. 2. Tracking of scattered convection
based on surface precipitation from the same cloud-resolving model output 3. Tracking of convective clouds based
on outgoing longwave radiation (OLR) for convection-permitting model simulation output 4. Tracking of convective
clouds based on OLR in geostationary satellite retrievals.

The examples are based on the analyses presented in an article describing tobac that has been submitted to the journal
GMD (Geophysical model development).

13
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CHAPTER 7

Refereed Publications

List of peer-reviewed publications in which tobac has been used:

Bukowski, J., & van den Heever, S. C. (2021). Direct radiative effects in haboobs. Journal of Geophysical Re-
search: Atmospheres, 126(21), e2021JD034814, doi:10.1029/2021JD034814.
Bukowski, J. (2021). Mineral Dust Lofting and Interactions with Cold Pools (Doctoral dissertation, Colorado State
University).
Heikenfeld, M. (2019). Aerosol effects on microphysical processes and deep convective clouds (Doctoral disserta-
tion, University of Oxford).
Kukulies, J., Chen, D., & Curio, J. (2021). The role of mesoscale convective systems in precipitation
in the Tibetan Plateau region. Journal of Geophysical Research: Atmospheres, 126(23), e2021JD035279.
doi:10.1029/2021JD035279.
Li, Y., Liu, Y., Chen, Y., Chen, B., Zhang, X., Wang, W. & Huo, Z. (2021). Characteristics of Deep Convec-
tive Systems and Initiation during Warm Seasons over China and Its Vicinity. Remote Sensing, 13(21), 4289.
doi:10.3390/rs13214289.
Marinescu, P. J., Van Den Heever, S. C., Heikenfeld, M., Barrett, A. I., Barthlott, C., Hoose, C., . . . & Zhang,
Y. (2021). Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts—a
multimodel assessment. Journal of the Atmospheric Sciences, 78(4), 1147-1172, doi: 10.1175/JAS-D-20-0200.1.
Marinescu, P. J. (2020). Observations of Aerosol Particles and Deep Convective Updrafts and the Modeling of
Their Interactions (Doctoral dissertation, Colorado State University).
Raut, B. A., Jackson, R., Picel, M., Collis, S. M., Bergemann, M., & Jakob, C. (2021). An Adaptive Tracking Al-
gorithm for Convection in Simulated and Remote Sensing Data. Journal of Applied Meteorology and Climatology,
60(4), 513-526, doi:10.1175/JAMC-D-20-0119.1.
Whitaker, J. W. (2021). An Investigation of an East Pacific Easterly Wave Genesis Pathway and the Impact of the
Papagayo and Tehuantepec Wind Jets on the East Pacific Mean State and Easterly Waves (Doctoral dissertation,
Colorado State University).
Zhang, X., Yin, Y., Kukulies, J., Li, Y., Kuang, X., He, C., .. & Chen, J. (2021). Revisiting Lightning Ac-
tivity and Parameterization Using Geostationary Satellite Observations. Remote Sensing, 13(19), 3866, doi:
10.3390/rs13193866.

Have you used tobac in your research?
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Please contact us (e.g. by joining our tobac google group) or submit a pull request containing your reference in our
main repo on GitHub!
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CHAPTER 8

Feature Detection Basics

The feature detection is the first step in using tobac.

Currently implemented methods:

Multiple thresholds:

Features are identified as regions above or below a sequence of subsequent thresholds (if searching for
eather maxima or minima in the data). Subsequently more restrictive threshold values are used to further
refine the resulting features and allow for separation of features that are connected through a continuous
region of less restrictive threshold values.
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Current development: We are currently working on additional methods for the identification of cloud features in
different types of datasets. Some of these methods are specific to the input data such a combination of different
channels from specific satellite imagers. Some of these methods will combine the feature detection and segmentations
step in one single algorithm.
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CHAPTER 9

Threshold Feature Detection Parameters

The proper selection of parameters used to detect features with the tobac multiple threshold feature detection is a
critical first step in using tobac. This page describes the various parameters available and provides broad comments
on the usage of each parameter.

A full list of parameters and descriptions can be found in the API Reference: tobac.feature_detection.
feature_detection_multithreshold()

9.1 Basic Operating Procedure

The tobac multiple threshold algorithm searches the input data (field_in) for contiguous regions of data greater than
(with target=’maximum’, see Target) or less than (with target=’minimum’) the selected thresholds (see Thresholds).
Contiguous regions (see Minimum Threshold Number) are then identified as individual features, with a single point
representing their location in the output (see Position Threshold). Using this output (see Feature Detection Output),
segmentation (Segmentation) and tracking (Linking) can be run.

9.2 Target

First, you must determine whether you want to detect features on maxima or minima in your dataset. For example,
if you are trying to detect clouds in IR satellite data, where clouds have relatively lower brightness temperatures than
the background, you would set target='minimum'. If, instead, you are trying to detect clouds by cloud water in
model data, where an increase in mixing ratio indicates the presence of a cloud, you would set target='maximum'.
The target parameter will determine the selection of many of the following parameters.

9.3 Thresholds

You can select to detect features on either one or multiple thresholds. The first threshold (or the single threshold) sets
the minimum magnitude (either lowest value for target='maximum' or highest value for target='minimum')

21
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that a feature can be detected on. For example, if you have a field made up of values lower than 10, and you set
target='maximum', threshold=[10,], tobac will detect no features.

Including multiple thresholds will allow tobac to refine the detection of features and detect multiple features that
are connected through a contiguous region of less restrictive threshold values. You can see a conceptual diagram of
that here: Feature Detection Basics. To examine how setting different thresholds can change the number of features
detected, see the example in this notebook: How multiple thresholds changes the features detected.

9.4 Minimum Threshold Number

The minimum number of points per threshold, set by n_min_threshold, determines how many contiguous pixels
are required to be above the threshold for the feature to be detected. Setting this point very low can allow extraneous
points to be detected as erroneous features, while setting this value too high will cause some real features to be missed.
The default value for this parameter is 0, which will cause any values greater than the threshold after filtering to
be identified as a feature. You can see a demonstration of the affect of increasing n_min_threshold at: How
n_min_threshold changes what features are detected.

9.5 Feature Position

There are four ways of calculating the single point used to represent feature center: arith-
metic center, extreme point, difference weighting, and absolute weighting. Generally, dif-
ference weighting (position_threshold='weighted_diff') or absolute weighting
(position_threshold='weighted_abs') is suggested for most atmospheric applications. An exam-
ple of these four methods is shown below, and can be further explored in the example notebook: Different
threshold_position options.

9.6 Filtering Options

Before tobac detects features, two filtering options can optionally be employed. First is a multidimensional Gaus-
sian Filter (scipy.ndimage.gaussian_filter), with its standard deviation controlled by the sigma_threshold pa-

22 Chapter 9. Threshold Feature Detection Parameters
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rameter. It is not required that users use this filter (to turn it off, set sigma_threshold=0), but the use of the
filter is recommended for most atmospheric datasets that are not otherwise smoothed. An example of varying the
sigma_threshold parameter can be seen in the below figure, and can be explored in the example notebook: tobac
Feature Detection Filtering.

The second filtering option is a binary erosion (skimage.morphology.binary_erosion), which reduces the size
of features in all directions. The amount of the erosion is controlled by the n_erosion_threshold pa-
rameter, with larger values resulting in smaller potential features. It is not required to use this feature (to
turn it off, set n_erosion_threshold=0), and its use should be considered alongside careful selection of
n_min_threshold. The default value is n_erosion_threshold=0.

9.7 Minimum Distance

The parameter min_distance sets the minimum distance between two detected features. If two detected features
are within min_distance of each other, the feature with the larger value is kept, and the feature with the smaller
value is discarded.

9.7. Minimum Distance 23
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CHAPTER 10

Feature Detection Parameter Examples

10.1 How multiple thresholds changes the features detected

10.1.1 Imports

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr

10.1.2 Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the
surrounding (0).

[2]: # Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()

25
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We now need to generate an Iris DataCube out of this dataset to run tobac feature detection. One can use xarray to
generate a DataArray and then convert it to Iris, as done here. Version 2.0 of tobac (currently in development) will
allow the use of xarray directly with tobac.

[3]: input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={
→˓'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()

10.1.3 Single Threshold

Let’s say that you are looking to detect any features above value 50 and don’t need to separate out individual cells
within the larger feature. For example, if you’re interested in tracking a single mesoscale convective system, you may
not care about the paths of individual convective cells within the feature.

[4]: thresholds = [50,]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")

(continues on next page)
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(continued from previous page)

plt.legend()
plt.title("Single Threshold of 50")
plt.show()

Now, let’s try a single threshold of 150, which will give us two features on the left side of the image.

[5]: thresholds = [150,]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Single Threshold of 150")
plt.show()
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This gives us two detected features with minimum values >150.

10.1.4 Multiple Thresholds

Now let’s say that you want to detect all three maxima within this feature. You may want to do this, if, for example,
you were trying to detect overhshooting tops within a cirrus shield. You could pick a single threshold, but if you pick
100, you won’t separate out the two features on the left. For example:

[6]: thresholds = [100, ]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Single Threshold of 100")
plt.show()

28 Chapter 10. Feature Detection Parameter Examples



tobac

This is the power of having multiple thresholds. We can set thresholds of 50, 100, 150, 200 and capture both:

[7]: thresholds = [50, 100, 150, 200]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Thresholds: [50, 100, 150, 200]")
plt.show()
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[8]: thresholds = [50, 100, 150, 200, 250]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
for i, threshold in enumerate(thresholds):

thresholded_points = single_threshold_features[single_threshold_features[
→˓'threshold_value'] == threshold]

plt.scatter(x=thresholded_points['hdim_2'].values,
y=thresholded_points['hdim_1'].values,
color='C'+str(i),
label="Threshold: "+str(threshold))

plt.legend()
plt.title("Thresholds: [50, 100, 150, 200]")
plt.show()
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10.2 How n_min_threshold changes what features are detected

10.2.1 Imports

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr

10.2.2 Generate Feature Data

Here, we will generate some simple feature data with a variety of features, large and small.

[2]: # Dimensions here are time, y, x.
input_field_arr = np.zeros((1,80,80))
# small 5x5 feature, area of 25 points
input_field_arr[0, 15:20, 10:15]=50
# larger 30x30 feature, area of 900
input_field_arr[0, 40:70, 10:30]=50
# small 2x2 feature within larger 30x30 feature, area of 4 points
input_field_arr[0, 52:54, 22:24]=100

(continues on next page)
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(continued from previous page)

# small 4x4 feature within larger 30x30 feature, area of 16 points
input_field_arr[0, 60:64, 15:19]=100

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()

[3]: # We now need to generate an Iris DataCube out of this dataset to run tobac feature
→˓detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done
→˓here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={
→˓'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray
→˓directly with tobac.

10.2.3 No n_min_threshold

If we keep n_min_threshold at the default value of 0, all three features will be detected with the appropriate
thresholds used.

[4]: thresholds = [50, 100]
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center', sigma_threshold=0)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")

(continues on next page)
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plt.legend()
plt.title("n_min_threshold=0")
plt.show()

10.2.4 Increasing n_min_threshold

As we increase n_min_threshold, fewer of these separate features are detected. In this example, if we set
n_min_threshold to 5, the smallest detected feature goes away.

[5]: thresholds = [50, 100]
n_min_threshold = 5
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center', sigma_threshold=0,

n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()
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If we increase n_min_threshold to 20, only the large 50-valued feature is detected, rather than the two higher-
valued squares.

[6]: thresholds = [50, 100]
n_min_threshold = 20
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center', sigma_threshold=0,

n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()
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If we set n_min_threshold to 100, only the largest feature is detected.

[7]: thresholds = [50, 100]
n_min_threshold = 100
# Using 'center' here outputs the feature location as the arithmetic center of the
→˓detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=
→˓'center', sigma_threshold=0,

n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()

10.3 Different threshold_position options

10.3.1 Imports

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr

10.3.2 Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the
surrounding (0).
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[2]: # Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()

[3]: # We now need to generate an Iris DataCube out of this dataset to run tobac feature
→˓detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done
→˓here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={
→˓'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray
→˓directly with tobac.

10.3.3 position_threshold='center'

This option will choose the arithmetic center of the area above the threshold. This is typically not recommended for
most data.

[4]: thresholds = [50,]
position_threshold = 'center'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_
→˓threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

(continues on next page)
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# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()

10.3.4 position_threshold='extreme'

This option will choose the most extreme point of our data. For target='maximum', this will be the largest value
in the feature area.

[5]: thresholds = [50,]
position_threshold = 'extreme'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_
→˓threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()
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10.3.5 position_threshold='weighted_diff'

This option will choose the center of the region weighted by the distance from the threshold value.

[6]: thresholds = [50,]
position_threshold = 'weighted_diff'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_
→˓threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()
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10.3.6 position_threshold='weighted_abs'

This option will choose the center of the region weighted by the absolute values of the field.

[7]: thresholds = [50,]
position_threshold = 'weighted_abs'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_
→˓field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_
→˓threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features[
→˓'hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()

10.3.7 All four methods together

[8]: thresholds = [50,]
fig, axarr = plt.subplots(2,2, figsize=(10,6))
testing_thresholds = ['center', 'extreme', 'weighted_diff', 'weighted_abs']
for position_threshold, ax in zip(testing_thresholds, axarr.flatten()):

single_threshold_features = tobac.feature_detection_multithreshold(field_in =
→˓input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_
→˓threshold=position_threshold)

color_mesh = ax.pcolormesh(input_field_arr[0])
plt.colorbar(color_mesh, ax=ax)
# Plot all features detected
ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_

→˓features['hdim_1'].values, color='r', label="Detected Features")
(continues on next page)

10.3. Different threshold_position options 39



tobac

(continued from previous page)

ax.legend()
ax.set_title("position_threshold "+ position_threshold)

plt.tight_layout()
plt.show()

10.4 tobac Feature Detection Filtering

Often, when detecting features with tobac, it is advisable to perform some amount of filtering on the data before feature
detection is processed to improve the quality of the features detected. This notebook will demonstrate the affects of
the various filtering algorithms built into tobac feature detection.

10.4.1 Imports

[1]: %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr
import scipy.ndimage
import skimage.morphology

10.4.2 Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the
surrounding (0).
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[2]: # Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()

[3]: # We now need to generate an Iris DataCube out of this dataset to run tobac feature
→˓detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done
→˓here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={
→˓'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray
→˓directly with tobac.

10.4.3 Gaussian Filtering (sigma_threshold parameter)

First, we will explore the use of Gaussian Filtering by varying the sigma_threshold parameter in tobac. Note
that when we set the sigma_threshold high enough, the right feature isn’t detected because it doesn’t meet the
higher 100 threshold; instead it is considered part of the larger parent feature that contains the high feature.

[4]: thresholds = [50, 100, 150, 200]
fig, axarr = plt.subplots(2,2, figsize=(10,6))
sigma_values = [0, 1, 2, 5]
for sigma_value, ax in zip(sigma_values, axarr.flatten()):

single_threshold_features = tobac.feature_detection_multithreshold(field_in =
→˓input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', sigma_
→˓threshold=sigma_value)

(continues on next page)
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# This is what tobac sees
filtered_field = scipy.ndimage.gaussian_filter(input_field_arr[0], sigma=sigma_

→˓value)
color_mesh = ax.pcolormesh(filtered_field)
plt.colorbar(color_mesh, ax=ax)
# Plot all features detected
ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_

→˓features['hdim_1'].values, color='r', label="Detected Features")
ax.legend()
if sigma_value == 0:

sigma_val_str = "0 (off)"
else:

sigma_val_str = "{0}".format(sigma_value)
ax.set_title("sigma_threshold= "+ sigma_val_str)

plt.tight_layout()
plt.show()

10.4.4 Erosion (n_erosion_threshold parameter)

Next, we will explore the use of the erosion filtering by varying the n_erosion_threshold parameter in tobac.
This erosion process only occurrs after masking the values greater than the threshold, so it’s easiest to see this when
detecting on a single threshold. As you can see, increasing the n_erosion_threshold parameter reduces the size
of each of our features.

[5]: thresholds = [100]
fig, axarr = plt.subplots(2,2, figsize=(10,6))

(continues on next page)
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erosion_values = [0, 5, 10, 15]
for erosion, ax in zip(erosion_values, axarr.flatten()):

single_threshold_features = tobac.feature_detection_multithreshold(field_in =
→˓input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', n_erosion_
→˓threshold=erosion)

# Create our mask- this is what tobac does internally for each threshold.
tobac_mask = 1*(input_field_arr[0] >= thresholds[0])

if erosion > 0:
# This is the parameter for erosion that gets passed to the scikit-image

→˓library.
footprint = np.ones((erosion, erosion))
# This is what tobac sees after erosion.
filtered_mask = skimage.morphology.binary_erosion(tobac_mask, selem).

→˓astype(np.int64)
else:

filtered_mask = tobac_mask

color_mesh = ax.pcolormesh(filtered_mask)
# Plot all features detected
ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_

→˓features['hdim_1'].values, color='r', label="Detected Features")
ax.legend()
if erosion == 0:

sigma_val_str = "0 (off)"
else:

sigma_val_str = "{0}".format(erosion)
ax.set_title("n_erosion_threshold= "+ sigma_val_str)

plt.tight_layout()
plt.show()
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CHAPTER 11

Feature Detection Output

Feature detection outputs a pandas dataframe with several variables. The variables, (with column names listed in
the Variable Name column), are described below with units. Note that while these variables come initially from the
feature detection step, segmentation and tracking also share some of these variables as keys (e.g., the feature acts
as a universal key between each of these). See Tracking Output for the additional columns added by tracking.

Variables that are common to all feature detection files:
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Table 1: tobac Feature Detection Output Variables
Variable
Name

Description Units Type

frame Frame/time/file number; starts from 0 and increments by 1 to N times. n/a int64
idx Feature number within that frame; starts at 1, increments by 1 to the number of features for

each frame, and resets to 1 when the frame increments
n/a int

hdim_1 First horizontal dimension in grid point space (typically, although not always, N/S or y
space)

Number
of
grid
points

float

hdim_2 Second horizontal dimension in grid point space (typically, although not always, E/W or x
space)

Number
of
grid
points

float

num Number of grid points that are within the threshold of this feature Number
of
grid
points

int

threshold_valueMaximum threshold value reached by the feature Units
of
the
in-
put
fea-
ture

int

feature Unique number of the feature; starts from 1 and increments by 1 to the number of features
identified in all frames

n/a int

time Time of the feature Date
and
time

object/python
date-
time

timestr String representation of the feature time YYYY-
MM-
DD
HH:MM:SS

object/string

y Grid point y location of the feature (see hdim_1 and hdim_2). Note that this is not neces-
sarily an integer value depending on your selection of position_threshold

Number
of
grid
points

float

x Grid point x location of the feature (see also y) Number
of
grid
points

float

projection_y_coordinateY location of the feature in projection coordinates Projection
co-
ordi-
nates
(usu-
ally
m)

float

projection_x_coordinateX location of the feature in projection coodinates Projection
co-
ordi-
nates
(usu-
ally
m)

float

lat Latitude of the feature Decimal
de-
grees

float

lon Longitude of the feature Decimal
de-
grees

float
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Segmentation

The segmentation step aims at associating cloud areas (2D data) or cloud volumes (3D data) with the identified and
tracked features.

Currently implemented methods:

Watershedding in 2D: Markers are set at the position of the individual feature positions identified in
the detection step. Then watershedding with a fixed threshold is used to determine the area around each
feature above/below that threshold value. This results in a mask with the feature id at all pixels identified
as part of the clouds and zeros in all cloud free areas.

Watershedding in 3D: Markers are set in the entire column above the individual feature positions iden-
tified in the detection step. Then watershedding with a fixed threshold is used to determine the volume
around each feature above/below that threshold value. This results in a mask with the feature id at all
voxels identified as part of the clouds and zeros in all cloud free areas.
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CHAPTER 13

Watershedding Segmentation Parameters

Appropriate parameters must be chosen to properly use the watershedding segmentation module in tobac. This page
gives a brief overview of parameters available in watershedding segmentation.

A full list of parameters and descriptions can be found in the API Reference: tobac.segmentation.
segmentation().

13.1 Basic Operating Procedure

The tobac watershedding segmentation algorithm selects regions of the data field with values greater
than threshold and associates those regions with the features features detected by feature detection
(see Feature Detection Basics). This algorithm uses a watershedding approach, which sets the individ-
ual features as initial seed points, and then has identified regions grow from those original seed points.
For further information on watershedding segmentation, see the scikit-image documentation <https://scikit-
image.org/docs/stable/auto_examples/segmentation/plot_watershed.html>.

Note that you can run the watershedding segmentation algorithm on any variable that shares a grid with the variable
detected in the feature detection step. It is not required that the variable used in feature detection be the same as the
one in segmentation (e.g., you can detect updraft features and then run segmentation on total condensate).

Segmentation can be run on 2D or 3D input data, but segmentation on 3D data using a 2D feature detection field
requires careful consideration of where the vertical seeding will occur (see Level).

13.2 Target

The target parameter works similarly to how it works in feature detection (see Threshold Feature Detection Param-
eters). To segment areas that are greater than threshold, use target='maximum'. To segment areas that are
less than threshold, use target='minimum'.
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13.3 Threshold

Unlike in multiple threshold detection in Feature Detection, Watershedding Segmentation only accepts one threshold.
This value will set either the minimum (for target='maximum') or maximum (for target='minimum') value
to be segmented.

13.4 Where the 3D seeds are placed for 2D feature detection

When running feature detection on a 2D dataset and then using these detected features to segment data in 3D, there is
clearly no information on where to put the seeds in the vertical. This is currently controlled by the level parameter.
By default, this parameter is None, which seeds the full column at every 2D detected feature point. As tobac does not
run a continuity check, this can result in undesired behavior, such as clouds in multiple layers being detected as one
large object.

level can also be set to a slice <https://docs.python.org/3/c-api/slice.html>, which determines where in the vertical
dimension (see ‘Vertical Coordinate‘_) the features are seeded from. Note that level operates in array coordinates
rather than physical coordinates.

13.5 Maximum Distance

tobac’s watershedding segmentation allows you to set a maximum distance away from the feature to classify as a
segmented region belonging to that figure. max_distance sets this distance in meters away from the detected
feature to allow it to be considered part of the point. To turn this feature off, set max_distance=None.
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CHAPTER 14

Segmentation Output

Segmentation outputs a mask (iris.cube.Cube and in the future xarray.DataArray) with the same dimensions as the
input field, where each segmented area has the same ID as its corresponding feature (see feature column in Feature
Detection Output). Note that there are some cases in which a feature is not attributed to a segmented area associated
with it (see Features without segmented areas).

Segmentation also outputs the same pandas dataframe as obtained by Feature Detection (see Feature Detection Basics)
but with one additional column:

Table 1: tobac Segmentation Output Variables
Variable
Name

Description Units Type

ncells Total number of grid points that belong to the segmented area associated with feature. n/a int64
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CHAPTER 15

Features without segmented areas

Not all detected features have a segmented area associated with them. Here, we show two cases in which a detected
feature might not have a segmented area associated with them (meaning that the mask file does not contain the ID of
the feature of interest and ncells in the segmentation output dataframe results in 0 grid cells. )

15.1 Case 1: Segmentation threshold

If the segmentation threshold is lower (assuming target=’minimum’) than the highest threshold specified in the Feature
Detection (see Threshold Feature Detection Parameters) this could leave some features without a segmented area,
simply because there are no values to be segmented.

Consider for example the following data with 5 being the highest threshold specified for the Feature Detection (see
Feature Detection Basics):
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If the segmentation threshold is larger than 5 (e.g. threshold = 6), the segmented area contains all values <= 5 (still
assuming target=’minimum’), no matter if the detected feature has a threshold lower than 5 (upper panels) or if it is
exactly equal to 5 and does not contain any features with lower thresholds inside (lower panels).

If the segmentation threshold is lower than or equal to the highest feature detection threshold (e.g. threshold = 5),
features with threshold values lower than 5 still get a segmented area associated with them (upper panels). However,
features that are exactly equal to 5 and do not contain any features with lower thresholds inside will not get any
segmented area associated with them (lower panels) which results in no values in the mask for this feature and ncells=0.

15.2 Case 2: Feature position

Another reason for features that do not have a segmented area associated with them is the rare but possible case when
the feature position is located outside of the threshold area:
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In this case, it may help to change the position_threshold (see Threshold Feature Detection Parameters) to extreme
instead of center:
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CHAPTER 16

Linking

Currently implemented methods for linking detected features into cloud tracks:

Trackpy:

This method uses the trackpy library (http://soft-matter.github.io/trackpy). This approach only takes the point-like
position of the feature, e.g. determined as the weighted mean, into account and does not use any other information
about the identified features into account. The linking makes use of the information from the linked features in the
previous timesteps to predict the position and then searches for matching features in a search range determined by the
v_max parameter.
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CHAPTER 17

Tracking Output

Tracking outputs a pandas dataframe with variables in addition to the variables output by Feature Detection (see
Feature Detection Output). While this is a separate dataframe than the one output by Feature Detection, it is identical
except for the addition of the columns listed below. The additional variables added by tracking, with column names
listed in the Variable Name column, are described below with units.

Variables that are common to all tracking files:

Table 1: tobac Tracking Output Variables
Variable
Name

Description Units Type

cell Tracked cell number; generally starts from 1. Untracked cell value can be set; but by
default is -1.

n/a int

time_cellTime since cell was first detected. minutesobject/python
timedelta
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CHAPTER 18

Merge and Split

This submodule is a post processing step to address tracked cells which merge/split. The first iteration of this module
is to combine the cells which are merging but have received a new cell id (and are considered a new cell) once merged.
This module uses a minimum euclidian spanning tree to combine merging cells, thus the postfix for the function is
MEST. This submodule will label merged/split cells with a TRACK number in addition to its CELL number.

Features, cells, and tracks are combined using parent/child nomenclature. (quick note on terms; “feature” is a detected
object at a single time step (see Feature Detection Basics). “cell” is a series of features linked together over multiple
timesteps (see Linking). “track” may be an individual cell or series of cells which have merged and/or split.)

Overview of the output dataframe from merge_split

d : xarray.core.dataset.Dataset

xarray dataset of tobac merge/split cells with parent and child designations.

Parent/child variables include:

• cell_parent_track_id: The associated track id for each cell. All cells that have merged or split will have the same
parent track id. If a cell never merges/splits, only one cell will have a particular track id.

• feature_parent_cell_id: The associated parent cell id for each feature. All feature in a given cell will have the
same cell id.

• feature_parent_track_id: The associated parent track id for each feature. This is not the same as the cell id
number.

• track_child_cell_count: The total number of features belonging to all child cells of a given track id.

• cell_child_feature_count: The total number of features for each cell.

Example usage:

d = merge_split_MEST(Track)

merge_split outputs an xarray dataset with several variables. The variables, (with column names listed in the Variable
Name column), are described below with units. Coordinates and dataset dimensions are Feature, Cell, and Track.

Variables that are common to all feature detection files:
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Table 1: tobac Merge_Split Track Output Variables
Variable
Name

Description Units Type

feature Unique number of the feature; starts from 1 and increments by 1 to the number of features
identified in all frames

n/a int64

cell Tracked cell number; generally starts from 1. Untracked cell value is -1. n/a int64
track Unique number of the track; starts from 0 and increments by 1 to the number of tracks

identified. Untracked cells and features have a track id of -1.
n/a int64

cell_parent_track_idThe associated track id for each cell. All cells that have merged or split will have the same
parent track id. If a cell never merges/splits, only one cell will have a particular track id.

n/a int64

feature_parent_cell_idThe associated parent cell id for each feature. All feature in a given cell will have the same
cell id.

n/a int64

feature_parent_track_idThe associated parent track id for each feature. This is not the same as the cell id number. n/a int64
track_child_cell_countThe number of features belonging to all child cells of a given track id. n/a int64
cell_child_feature_countThe number of features for each cell. n/a int64
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CHAPTER 19

tobac package

19.1 Submodules

19.2 tobac.analysis module

Provide tools to analyse and visualize the tracked objects. This module provides a set of routines that enables perform-
ing analyses and deriving statistics for individual tracks, such as the time series of integrated properties and vertical
profiles. It also provides routines to calculate summary statistics of the entire population of tracked features in the
field like histograms of areas/volumes or mass and a detailed cell lifetime analysis. These analysis routines are all
built in a modular manner. Thus, users can reuse the most basic methods for interacting with the data structure of
the package in their own analysis procedures in Python. This includes functions performing simple tasks like looping
over all identified objects or trajectories and masking arrays for the analysis of individual features. Plotting routines
include both visualizations for individual convective cells and their properties. [1]_

References

Notes

tobac.analysis.area_histogram(features, mask, bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False, method_area=None, re-
turn_values=False, representative_area=False)

Create an area histogram of the features. If the DataFrame does not contain an area column, the areas are
calculated.

Parameters

• features (pandas.DataFrame) – DataFrame of the features.

• mask (iris.cube.Cube) – Cube containing mask (int for tracked volumes 0 every-
where else). Needs to contain either projection_x_coordinate and projection_y_coordinate
or latitude and longitude coordinates. The output of a segmentation should be used here.
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• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a ndarray, it defines a monotonically
increasing array of bin edges, including the rightmost edge. Default is np.arange(0, 30000,
500).

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• return_values (bool, optional) – Bool determining wether the areas of the fea-
tures are returned from this function. Default is False.

• representive_area (bool, optional) – If False, no weights will associated to
the values. If True, the weights for each area will be the areas itself, i.e. each bin count will
have the value of the sum of all areas within the edges of the bin. Default is False.

Returns

• hist (ndarray) – The values of the histogram.

• bin_edges (ndarray) – The edges of the histogram.

• bin_centers (ndarray) – The centers of the histogram intervalls.

• areas (ndarray, optional) – A numpy array approximating the area of each feature.

tobac.analysis.calculate_area(features, mask, method_area=None)
Calculate the area of the segments for each feature.

Parameters

• features (pandas.DataFrame) – DataFrame of the features whose area is to be cal-
culated.

• mask (iris.cube.Cube) – Cube containing mask (int for tracked volumes 0 every-
where else). Needs to contain either projection_x_coordinate and projection_y_coordinate
or latitude and longitude coordinates.

• method_area ({None, 'xy', 'latlon'}, optional) – Flag determining how
the area is calculated. ‘xy’ uses the areas of the individual pixels, ‘latlon’ uses the
area_weights method of iris.analysis.cartography, None checks wether the required coor-
dinates are present and starts with ‘xy’. Default is None.

Returns features – DataFrame of the features with a new column ‘area’, containing the calculated
areas.

Return type pandas.DataFrame

Raises ValueError – If neither latitude/longitude nor projec-
tion_x_coordinate/projection_y_coordinate are present in mask_coords.

If latitude/longitude coordinates are 2D.

If latitude/longitude shapes are not supported.

If method is undefined, i.e. method is neither None, ‘xy’ nor ‘latlon’.

tobac.analysis.calculate_areas_2Dlatlon(_2Dlat_coord, _2Dlon_coord)
Calculate an array of cell areas when given two 2D arrays of latitude and longitude values

NOTE: This currently assuems that the lat/lon grid is orthogonal, which is not strictly true! It’s close enough for
most cases, but should be updated in future to use the cross product of the distances to the neighbouring cells.
This will require the use of a more advanced calculation. I would advise using pyproj at some point in the future
to solve this issue and replace haversine distance.
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Parameters

• _2Dlat_coord (AuxCoord) – Iris auxilliary coordinate containing a 2d grid of latitudes
for each point.

• _2Dlon_coord (AuxCoord) – Iris auxilliary coordinate containing a 2d grid of longi-
tudes for each point.

Returns area – A numpy array approximating the area of each cell.

Return type ndarray

tobac.analysis.calculate_distance(feature_1, feature_2, method_distance=None)
Compute the distance between two features. It is based on either lat/lon coordinates or x/y coordinates.

Parameters

• feature_2 (feature_1,) – Dataframes containing multiple features or pandas.Series
of one feature. Need to contain either projection_x_coordinate and projection_y_coordinate
or latitude and longitude coordinates.

• method_distance ({None, 'xy', 'latlon'}, optional) – Method of dis-
tance calculation. ‘xy’ uses the length of the vector between the two features, ‘latlon’ uses
the haversine distance. None checks wether the required coordinates are present and starts
with ‘xy’. Default is None.

Returns distance – Float with the distance between the two features in meters if the input are two
pandas.Series containing one feature, pandas.Series of the distances if one of the inputs contains
multiple features.

Return type float or pandas.Series

tobac.analysis.calculate_nearestneighbordistance(features, method_distance=None)
Calculate the distance between a feature and the nearest other feature in the same timeframe.

Parameters

• features (pandas.DataFrame) – DataFrame of the features whose nearest neighbor
distance is to be calculated. Needs to contain either projection_x_coordinate and projec-
tion_y_coordinate or latitude and longitude coordinates.

• method_distance ({None, 'xy', 'latlon'}, optional) – Method of dis-
tance calculation. ‘xy’ uses the length of the vector between the two features, ‘latlon’ uses
the haversine distance. None checks wether the required coordinates are present and starts
with ‘xy’. Default is None.

Returns features – DataFrame of the features with a new column ‘min_distance’, containing the
calculated minimal distance to other features.

Return type pandas.DataFrame

tobac.analysis.calculate_overlap(track_1, track_2, min_sum_inv_distance=None,
min_mean_inv_distance=None)

Count the number of time frames in which the individual cells of two tracks are present together and calculate
their mean and summed inverse distance.

Parameters

• track_2 (track_1,) – The tracks conaining the cells to analyze.

• min_sum_inv_distance (float, optional) – Minimum of the inverse net dis-
tance for two cells to be counted as overlapping. Default is None.

• min_mean_inv_distance (float, optional) – Minimum of the inverse mean
distance for two cells to be counted as overlapping. Default is None.
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Returns overlap – DataFrame containing the columns cell_1 and cell_2 with the index of
the cells from the tracks, n_overlap with the number of frames both cells are present in,
mean_inv_distance with the mean inverse distance and sum_inv_distance with the summed in-
verse distance of the cells.

Return type pandas.DataFrame

tobac.analysis.calculate_velocity(track, method_distance=None)
Calculate the velocities of a set of linked features.

Parameters

• track (pandas.DataFrame) –

Dataframe of linked features, containing the columns ‘cell’, ’time’ and either ‘projec-
tion_x_coordinate’ and ‘projection_y_coordinate’ or ‘latitude’ and ‘longitude’.

• method_distance ({None, 'xy', 'latlon'}, optional) – Method of dis-
tance calculation, used to calculate the velocity. ‘xy’ uses the length of the vector between
the two features, ‘latlon’ uses the haversine distance. None checks wether the required
coordinates are present and starts with ‘xy’. Default is None.

Returns track – DataFrame from the input, with an additional column ‘v’, contain the value of the
velocity for every feature at every possible timestep

Return type pandas.DataFrame

tobac.analysis.calculate_velocity_individual(feature_old, feature_new,
method_distance=None)

Calculate the mean velocity of a feature between two timeframes.

Parameters

• feature_old (pandas.Series) – pandas.Series of a feature at a certain time-
frame. Needs to contain a ‘time’ column and either projection_x_coordinate and projec-
tion_y_coordinate or latitude and longitude coordinates.

• feature_new (pandas.Series) – pandas.Series of the same feature at a later time-
frame. Needs to contain a ‘time’ column and either projection_x_coordinate and projec-
tion_y_coordinate or latitude and longitude coordinates.

• method_distance ({None, 'xy', 'latlon'}, optional) – Method of dis-
tance calculation, used to calculate the velocity. ‘xy’ uses the length of the vector between
the two features, ‘latlon’ uses the haversine distance. None checks wether the required
coordinates are present and starts with ‘xy’. Default is None.

Returns velocity – Value of the approximate velocity.

Return type float

tobac.analysis.cell_statistics(input_cubes, track, mask, aggregators, cell, out-
put_path=’./’, output_name=’Profiles’, width=10000,
z_coord=’model_level_number’, dimensions=[’x’, ’y’],
**kwargs)

Parameters

• input_cubes (iris.cube.Cube) –

• track (dask.dataframe.DataFrame) –

• mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 every-
where else).

• list (aggregators) – list of iris.analysis.Aggregator instances
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• cell (int) – Integer id of cell to create masked cube for output.

• output_path (str, optional) – Default is ‘./’.

• output_name (str, optional) – Default is ‘Profiles’.

• width (int, optional) – Default is 10000.

• z_coord (str, optional) – Name of the vertical coordinate in the cube. Default is
‘model_level_number’.

• dimensions (list of str, optional) – Default is [‘x’, ‘y’].

• **kwargs –

Returns

Return type None

tobac.analysis.cell_statistics_all(input_cubes, track, mask, aggregators, output_path=’./’,
cell_selection=None, output_name=’Profiles’,
width=10000, z_coord=’model_level_number’, di-
mensions=[’x’, ’y’], **kwargs)

Parameters

• input_cubes (iris.cube.Cube) –

• track (dask.dataframe.DataFrame) –

• mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 every-
where else).

• aggregators (list) – list of iris.analysis.Aggregator instances

• output_path (str, optional) – Default is ‘./’.

• cell_selection (optional) – Default is None.

• output_name (str, optional) – Default is ‘Profiles’.

• width (int, optional) – Default is 10000.

• z_coord (str, optional) – Name of the vertical coordinate in the cube. Default is
‘model_level_number’.

• dimensions (list of str, optional) – Default is [‘x’, ‘y’].

• **kwargs –

Returns

Return type None

tobac.analysis.cog_cell(cell, Tracks=None, M_total=None, M_liquid=None, M_frozen=None,
Mask=None, savedir=None)

Parameters

• cell (int) – Integer id of cell to create masked cube for output.

• Tracks (optional) – Default is None.

• M_total (subset of cube, optional) – Default is None.

• M_liquid (subset of cube, optional) – Default is None.

• M_frozen (subset of cube, optional) – Default is None.

• savedir (str) – Default is None.
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Returns

Return type None

tobac.analysis.haversine(lat1, lon1, lat2, lon2)
Computes the Haversine distance in kilometers.

Calculates the Haversine distance between two points (based on implementation CIS https://github.com/
cedadev/cis).

Parameters

• lon1 (lat1,) – First point or points as array in degrees.

• lon2 (lat2,) – Second point or points as array in degrees.

Returns arclen * RADIUS_EARTH – Array of Distance(s) between the two points(-arrays) in
kilometers.

Return type array

tobac.analysis.histogram_cellwise(Track, variable=None, bin_edges=None, quantity=’max’,
density=False)

Create a histogram of the maximum, minimum or mean of a variable for the cells (series of features linked
together over multiple timesteps) of a track. Essentially a wrapper of the numpy.histogram() method.

Parameters

• Track (pandas.DataFrame) – The track containing the variable to create the histogram
from.

• variable (string, optional) – Column of the DataFrame with the variable on
which the histogram is to be based on. Default is None.

• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a ndarray, it defines a monotonically
increasing array of bin edges, including the rightmost edge.

• quantity ({'max', 'min', 'mean'}, optional) – Flag determining wether to
use maximum, minimum or mean of a variable from all timeframes the cell covers. Default
is ‘max’.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

Returns

• hist (ndarray) – The values of the histogram

• bin_edges (ndarray) – The edges of the histogram

• bin_centers (ndarray) – The centers of the histogram intervalls

Raises ValueError – If quantity is not ‘max’, ‘min’ or ‘mean’.

tobac.analysis.histogram_featurewise(Track, variable=None, bin_edges=None, den-
sity=False)

Create a histogram of a variable from the features (detected objects at a single time step) of a track. Essentially
a wrapper of the numpy.histogram() method.

Parameters

• Track (pandas.DataFrame) – The track containing the variable to create the histogram
from.
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• variable (string, optional) – Column of the DataFrame with the variable on
which the histogram is to be based on. Default is None.

• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a sequence, it defines a monotoni-
cally increasing array of bin edges, including the rightmost edge.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

Returns

• hist (ndarray) – The values of the histogram

• bin_edges (ndarray) – The edges of the histogram

• bin_centers (ndarray) – The centers of the histogram intervalls

tobac.analysis.lifetime_histogram(Track, bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False, return_values=False)

Compute the lifetime histogram of linked features.

Parameters

• Track (pandas.DataFrame) – Dataframe of linked features, containing the columns
‘cell’ and ‘time_cell’.

• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a ndarray, it defines a monotonically
increasing array of bin edges, including the rightmost edge. The unit is minutes. Default is
np.arange(0, 200, 20).

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• return_values (bool, optional) – Bool determining wether the lifetimes of the
features are returned from this function. Default is False.

Returns

• hist (ndarray) – The values of the histogram.

• bin_edges (ndarray) – The edges of the histogram.

• bin_centers (ndarray) – The centers of the histogram intervalls.

• minutes, optional (ndarray) – Numpy.array of the lifetime of each feature in minutes. Re-
turned if return_values is True.

tobac.analysis.nearestneighbordistance_histogram(features,
bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False,
method_distance=None, re-
turn_values=False)

Create an nearest neighbor distance histogram of the features. If the DataFrame does not contain a
‘min_distance’ column, the distances are calculated.

features

bin_edges [int or ndarray, optional] If bin_edges is an int, it defines the number of equal-width bins in the given
range. If bins is a ndarray, it defines a monotonically increasing array of bin edges, including the rightmost
edge. Default is np.arange(0, 30000, 500).
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density [bool, optional] If False, the result will contain the number of samples in each bin. If True, the result is
the value of the probability density function at the bin, normalized such that the integral over the range is
1. Default is False.

method_distance [{None, ‘xy’, ‘latlon’}, optional] Method of distance calculation. ‘xy’ uses the length of the
vector between the two features, ‘latlon’ uses the haversine distance. None checks wether the required
coordinates are present and starts with ‘xy’. Default is None.

return_values [bool, optional] Bool determining wether the nearest neighbor distance of the features are re-
turned from this function. Default is False.

Returns

• hist (ndarray) – The values of the histogram.

• bin_edges (ndarray) – The edges of the histogram.

• distances, optional (ndarray) – A numpy array with the nearest neighbor distances of each
feature.

tobac.analysis.velocity_histogram(track, bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False, method_distance=None, re-
turn_values=False)

Create an velocity histogram of the features. If the DataFrame does not contain a velocity column, the velocities
are calculated.

Parameters

• track (pandas.DataFrame) –

DataFrame of the linked features, containing the columns ‘cell’, ’time’ and either ‘pro-
jection_x_coordinate’ and ‘projection_y_coordinate’ or ‘latitude’ and ‘longitude’.

• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a ndarray, it defines a monotonically
increasing array of bin edges, including the rightmost edge. Default is np.arange(0, 30000,
500).

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• methods_distance ({None, 'xy', 'latlon'}, optional) – Method of dis-
tance calculation, used to calculate the velocity. ‘xy’ uses the length of the vector between
the two features, ‘latlon’ uses the haversine distance. None checks wether the required
coordinates are present and starts with ‘xy’. Default is None.

• return_values (bool, optional) – Bool determining wether the velocities of the
features are returned from this function. Default is False.

Returns

• hist (ndarray) – The values of the histogram.

• bin_edges (ndarray) – The edges of the histogram.

• velocities , optional (ndarray) – Numpy array with the velocities of each feature.

19.3 tobac.centerofgravity module

Identify center of gravity and mass for analysis.
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tobac.centerofgravity.calculate_cog(tracks, mass, mask)
Calculate center of gravity and mass for each tracked cell.

Parameters

• tracks (pandas.DataFrame) – DataFrame containing trajectories of cell centers.

• mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’, ‘geopoten-
tial_height’,’projection_x_coordinate’ and ‘projection_y_coordinate’).

• mask (iris.cube.Cube) – Cube containing mask (int > where belonging to
area/volume of feature, 0 else).

Returns tracks_out – Dataframe containing t, x, y, z positions of center of gravity and total mass
of each tracked cell at each timestep.

Return type pandas.DataFrame

tobac.centerofgravity.calculate_cog_domain(mass)
Calculate center of gravity and mass for entire domain.

Parameters mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’, ‘geopoten-
tial_height’,’projection_x_coordinate’ and ‘projection_y_coordinate’).

Returns tracks_out – Dataframe containing t, x, y, z positions of center of gravity and total mass
of the entire domain.

Return type pandas.DataFrame

tobac.centerofgravity.calculate_cog_untracked(mass, mask)
Calculate center of gravity and mass for untracked domain parts.

Parameters

• mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’, ‘geopoten-
tial_height’,’projection_x_coordinate’ and ‘projection_y_coordinate’).

• mask (iris.cube.Cube) – Cube containing mask (int > where belonging to
area/volume of feature, 0 else).

Returns tracks_out – Dataframe containing t, x, y, z positions of center of gravity and total mass
for untracked part of the domain.

Return type pandas.DataFrame

tobac.centerofgravity.center_of_gravity(cube_in)
Calculate center of gravity and sum of quantity.

Parameters cube_in (iris.cube.Cube) – Cube (potentially masked) of quantity (need coor-
dinates ‘geopotential_height’,’projection_x_coordinate’ and ‘projection_y_coordinate’).

Returns

• x (float) – X position of center of gravity.

• y (float) – Y position of center of gravity.

• z (float) – Z position of center of gravity.

• variable_sum (float) – Sum of quantity of over unmasked part of the cube.

19.4 tobac.feature_detection module

Provide feature detection.
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This module can work with any two-dimensional field. To identify the features, contiguous regions above or below a
threshold are determined and labelled individually. To describe the specific location of the feature at a specific point
in time, different spatial properties are used to describe the identified region. [2]_

References

tobac.feature_detection.feature_detection_multithreshold(field_in, dxy, thresh-
old=None, min_num=0,
target=’maximum’, posi-
tion_threshold=’center’,
sigma_threshold=0.5,
n_erosion_threshold=0,
n_min_threshold=0,
min_distance=0, fea-
ture_number_start=1,
wave-
length_filtering=None)

Perform feature detection based on contiguous regions.

The regions are above/below a threshold.

Parameters

• field_in (iris.cube.Cube) – 2D field to perform the tracking on (needs to have
coordinate ‘time’ along one of its dimensions),

• dxy (float) – Grid spacing of the input data (in meter).

• thresholds (list of floats, optional) – Threshold values used to select tar-
get regions to track. Default is None.

• target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking
is targetting minima or maxima in the data. Default is ‘maximum’.

• position_threshold ({'center', 'extreme', 'weighted_diff',) –
‘weighted_abs’}, optional Flag choosing method used for the position of the tracked fea-
ture. Default is ‘center’.

• coord_interp_kind (str, optional) – The kind of interpolation for coordinates.
Default is ‘linear’. For 1d interp, {‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’,

’slinear’, ‘quadratic’, ‘cubic’, ‘previous’, ‘next’}.

For 2d interp, {‘linear’, ‘cubic’, ‘quintic’}.

• sigma_threshold (float, optional) – Standard deviation for intial filtering step.
Default is 0.5.

• n_erosion_threshold (int, optional) – Number of pixel by which to erode the
identified features. Default is 0.

• n_min_threshold (int, optional) – Minimum number of identified features. De-
fault is 0.

• min_distance (float, optional) – Minimum distance between detected features
(in meter). Default is 0.

• feature_number_start (int, optional) – Feature id to start with. Default is 1.

• wavelength_filtering (tuple, optional) – Minimum and maximum wave-
length for spectral filtering in meter. Default is None.
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Returns features – Detected features. The structure of this dataframe is explained here

Return type pandas.DataFrame

tobac.feature_detection.feature_detection_multithreshold_timestep(data_i,
i_time,
thresh-
old=None,
min_num=0,
tar-
get=’maximum’,
posi-
tion_threshold=’center’,
sigma_threshold=0.5,
n_erosion_threshold=0,
n_min_threshold=0,
min_distance=0,
fea-
ture_number_start=1,
dxy=-1,
wave-
length_filtering=None)

Find features in each timestep.

Based on iteratively finding regions above/below a set of thresholds. Smoothing the input data with the Gaussian
filter makes output less sensitive to noisiness of input data.

Parameters

• data_i (iris.cube.Cube) – 2D field to perform the feature detection (single timestep)
on.

• threshold (float, optional) – Threshold value used to select target regions to
track. Default is None.

• min_num (int, optional) – This parameter is not used in the function. Default is 0.

• target ({'maximum', 'minimum'}, optinal) – Flag to determine if tracking is
targetting minima or maxima in the data. Default is ‘maximum’.

• position_threshold ({'center', 'extreme', 'weighted_diff',) –
‘weighted_abs’}, optional Flag choosing method used for the position of the tracked fea-
ture. Default is ‘center’.

• sigma_threshold (float, optional) – Standard deviation for intial filtering step.
Default is 0.5.

• n_erosion_threshold (int, optional) – Number of pixel by which to erode the
identified features. Default is 0.

• n_min_threshold (int, optional) – Minimum number of identified features. De-
fault is 0.

• min_distance (float, optional) – Minimum distance between detected features
(in meter). Default is 0.

• feature_number_start (int, optional) – Feature id to start with. Default is 1.

• dxy (float) – Grid spacing in meter.

• wavelength_filtering (tuple, optional) – Minimum and maximum wave-
length for spectral filtering in meter. Default is None.
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Returns features_threshold – Detected features for individual timestep.

Return type pandas DataFrame

tobac.feature_detection.feature_detection_threshold(data_i, i_time, threshold=None,
min_num=0, target=’maximum’,
position_threshold=’center’,
sigma_threshold=0.5,
n_erosion_threshold=0,
n_min_threshold=0,
min_distance=0, idx_start=0)

Find features based on individual threshold value.

Parameters

• data_i (iris.cube.Cube) – 2D field to perform the feature detection (single timestep)
on.

• i_time (int) – Number of the current timestep.

• threshold (float, optional) –

Threshold value used to select target regions to track. Default is None.

• target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking
is targetting minima or maxima in the data. Default is ‘maximum’.

• position_threshold ({'center', 'extreme', 'weighted_diff',) –
‘weighted_abs’}, optional Flag choosing method used for the position of the tracked fea-
ture. Default is ‘center’.

• sigma_threshold (float, optional) – Standard deviation for intial filtering step.
Default is 0.5.

• n_erosion_threshold (int, optional) – Number of pixel by which to erode the
identified features. Default is 0.

• n_min_threshold (int, optional) – Minimum number of identified features. De-
fault is 0.

• min_distance (float, optional) – Minimum distance between detected features
(in meter). Default is 0.

• idx_start (int, optional) – Feature id to start with. Default is 0.

Returns

• features_threshold (pandas DataFrame) – Detected features for individual threshold.

• regions (dict) – Dictionary containing the regions above/below threshold used for each fea-
ture (feature ids as keys).

tobac.feature_detection.feature_position(hdim1_indices, hdim2_indices, re-
gion_small=None, region_bbox=None,
track_data=None, threshold_i=None, posi-
tion_threshold=’center’, target=None)

Determine feature position with regard to the horizontal dimensions in pixels from the identified region above
threshold values

Parameters

• hdim1_indices (list) – indices of pixels in region along first horizontal dimension

• hdim2_indices (list) – indices of pixels in region along second horizontal dimension
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• region_small (2D array-like) – A true/false array containing True where the
threshold is met and false where the threshold isn’t met. This array should be the
the size specified by region_bbox, and can be a subset of the overall input array (i.e.,
`track_data`).

• region_bbox (list or tuple with length of 4) – The coordinates that re-
gion_small occupies within the total track_data array. This is in the order that the coor-
dinates come from the `get_label_props_in_dict` function. For 2D data, this
should be: (hdim1 start, hdim 2 start, hdim 1 end, hdim 2 end).

• track_data (2D array-like) – 2D array containing the data

• threshold_i (float) – The threshold value that we are testing against

• position_threshold ({'center', 'extreme', 'weighted_diff', ') –
weighted abs’} How to select the single point position from our data. ‘center’ picks the
geometrical centre of the region, and is typically not recommended. ‘extreme’ picks the
maximum or minimum value inside the region (max/min set by

`target`) ‘weighted_diff’ picks the centre of the region weighted by the distance
from the threshold value

’weighted_abs’ picks the centre of the region weighted by the absolute values of the field

• target ({'maximum', 'minimum'}) – Used only when position_threshold is set to
‘extreme’, this sets whether it is looking for maxima or minima.

Returns

• float – feature position along 1st horizontal dimension

• float – feature position along 2nd horizontal dimension

tobac.feature_detection.filter_min_distance(features, dxy, min_distance)
Perform feature detection based on contiguous regions.

Regions are above/below a threshold.

Parameters

• features (pandas.DataFrame) –

• dxy (float) – Grid spacing (in meter) of the input data.

• min_distance (float, optional) – Minimum distance (in meter) between de-
tected features.

Returns features – Detected features.

Return type pandas.DataFrame

tobac.feature_detection.remove_parents(features_thresholds, regions_i, regions_old)
Remove parents of newly detected feature regions.

Remove features where its regions surround newly detected feature regions.

Parameters

• features_thresholds (pandas.DataFrame) – Dataframe containing detected
features.

• regions_i (dict) – Dictionary containing the regions above/below threshold for the
newly detected feature (feature ids as keys).

• regions_old (dict) – Dictionary containing the regions above/below threshold from
previous threshold (feature ids as keys).
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Returns features_thresholds – Dataframe containing detected features excluding those that are
superseded by newly detected ones.

Return type pandas.DataFrame

tobac.feature_detection.test_overlap(region_inner, region_outer)
Test for overlap between two regions

Parameters

• region_1 (list) – list of 2-element tuples defining the indices of all cell in the region

• region_2 (list) – list of 2-element tuples defining the indices of all cell in the region

Returns overlap – True if there are any shared points between the two regions

Return type bool

19.5 tobac.merge_split module

Tobac merge and split This submodule is a post processing step to address tracked cells which merge/split. The first
iteration of this module is to combine the cells which are merging but have received a new cell id (and are considered
a new cell) once merged. In general this submodule will label merged/split cells with a TRACK number in addition to
its CELL number.

tobac.merge_split.merge_split_MEST(TRACK, dxy, distance=None, frame_len=5)
function to postprocess tobac track data for merge/split cells using a minimum euclidian spanning tree

Parameters

• TRACK (pandas.core.frame.DataFrame) – Pandas dataframe of tobac Track infor-
mation

• dxy (float, mandatory) – The x/y grid spacing of the data. Should be in meters.

distance [float, optional] Distance threshold determining how close two features must be in order to consider
merge/splitting. Default is 25x the x/y grid spacing of the data, given in dxy. The distance should be in
units of meters.

frame_len [float, optional] Threshold for the maximum number of frames that can separate the end of cell and
the start of a related cell. Default is five (5) frames.

Returns

d –

xarray dataset of tobac merge/split cells with parent and child designations.

Parent/child variables include:

• cell_parent_track_id: The associated track id for each cell. All cells that have merged or
split will have the same parent track id. If a cell never merges/splits, only one cell will have
a particular track id.

• feature_parent_cell_id: The associated parent cell id for each feature. All features in a given
cell will have the same cell id. This is the original TRACK cell_id.

• feature_parent_track_id: The associated parent track id for each feature. This is not the
same as the cell id number.
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• track_child_cell_count: The total number of features belonging to all child cells of a given
track id.

• cell_child_feature_count: The total number of features for each cell.

Return type xarray.core.dataset.Dataset

Example usage: d = merge_split_MEST(Track) ds = tobac.utils.standardize_track_dataset(Track, refl_mask)
both_ds = xr.merge([ds, d],compat =’override’) both_ds = tobac.utils.compress_all(both_ds)
both_ds.to_netcdf(os.path.join(savedir,’Track_features_merges.nc’))

19.6 tobac.plotting module

Provide methods for plotting analyzed data.

Plotting routines including both visualizations for the entire dataset including all tracks, and detailed visualizations for
individual cells and their properties.

References

tobac.plotting.animation_mask_field(track, features, field, mask, interval=500, figsize=(10,
10), **kwargs)

Create animation of field, features and segments of all timeframes.

Parameters

• track (pandas.DataFrame) – Output of linking_trackpy.

• features (pandas.DataFrame) – Output of the feature detection.

• field (iris.cube.Cube) – Original input data.

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else), output of the segmentation step.

• interval (int, optional) – Delay between frames in milliseconds. Default is 500.

• figsize (tupel of float, optional) – Width, height of the plot in inches. De-
fault is (10, 10).

• **kwargs –

Returns animation – Created animation as object.

Return type matplotlib.animation.FuncAnimation

tobac.plotting.make_map(axes)
Configure the parameters of cartopy for plotting.

Parameters axes (cartopy.mpl.geoaxes.GeoAxesSubplot) – GeoAxesSubplot to con-
figure.

Returns axes – Cartopy axes to configure

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

tobac.plotting.map_tracks(track, axis_extent=None, figsize=None, axes=None,
untracked_cell_value=-1)

Plot the trajectories of the cells on a map.

Parameters
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• track (pandas.DataFrame) – Dataframe containing the linked features with a column
‘cell’.

• axis_extent (matplotlib.axes, optional) – Array containing the bounds of
the longitude and latitude values. The structure is [long_min, long_max, lat_min, lat_max].
Default is None.

• figsize (tuple of floats, optional) – Width, height of the plot in inches. De-
fault is (10, 10).

• axes (cartopy.mpl.geoaxes.GeoAxesSubplot, optional) – GeoAxesSub-
plot to use for plotting. Default is None.

• untracked_cell_value (int or np.nan, optional) – Value of untracked
cells in track[‘cell’]. Default is -1.

Returns axes – Axes with the plotted trajectories.

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

Raises ValueError – If no axes is passed.

tobac.plotting.plot_histogram_cellwise(track, bin_edges, variable, quantity, axes=None,
density=False, **kwargs)

Plot the histogram of a variable based on the cells.

Parameters

• track (pandas.DataFrame) – DataFrame of the features containing the variable as
column and a column ‘cell’.

• bin_edges (int or ndarray) – If bin_edges is an int, it defines the number of equal-
width bins in the given range. If bins is a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.

• variable (string) – Column of the DataFrame with the variable on which the his-
togram is to be based on. Default is None.

• quantity ({'max', 'min', 'mean'}, optional) – Flag determining wether to
use maximum, minimum or mean of a variable from all timeframes the cell covers. Default
is ‘max’.

• axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default
is None.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• **kwargs –

Returns plot_hist – List containing the matplotlib.lines.Line2D instance of the histogram

Return type list

tobac.plotting.plot_histogram_featurewise(Track, bin_edges, variable, axes=None, den-
sity=False, **kwargs)

Plot the histogram of a variable based on the features.

Parameters

• Track (pandas.DataFrame) – DataFrame of the features containing the variable as
column.
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• bin_edges (int or ndarray) – If bin_edges is an int, it defines the number of equal-
width bins in the given range. If bins is a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.

• variable (str) – Column of the DataFrame with the variable on which the histogram is
to be based on.

• axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default
is None.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• **kwargs –

Returns plot_hist – List containing the matplotlib.lines.Line2D instance of the histogram

Return type list

tobac.plotting.plot_lifetime_histogram(track, axes=None,
bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False, **kwargs)

Plot the liftetime histogram of the cells.

Parameters

• track (pandas.DataFrame) – DataFrame of the features containing the columns ‘cell’
and ‘time_cell’.

• axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default
is None.

• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a sequence, it defines a monoton-
ically increasing array of bin edges, including the rightmost edge. Default is np.arange(0,
200, 20).

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• **kwargs –

Returns plot_hist – List containing the matplotlib.lines.Line2D instance of the histogram

Return type list

tobac.plotting.plot_lifetime_histogram_bar(track, axes=None,
bin_edges=<sphinx.ext.autodoc.importer._MockObject
object>, density=False, width_bar=1,
shift=0.5, **kwargs)

Plot the liftetime histogram of the cells as bar plot.

Parameters

• track (pandas.DataFrame) – DataFrame of the features containing the columns ‘cell’
and ‘time_cell’.

• axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default
is None.
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• bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the
number of equal-width bins in the given range. If bins is a sequence, it defines a monotoni-
cally increasing array of bin edges, including the rightmost edge.

• density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the probability density function at the bin,
normalized such that the integral over the range is 1. Default is False.

• width_bar (float) – Width of the bars. Default is 1.

• shift (float) – Value to shift the bin centers to the right. Default is 0.5.

• **kwargs –

Returns plot_hist – matplotlib.container.BarContainer instance of the histogram

Return type matplotlib.container.BarContainer

tobac.plotting.plot_mask_cell_individual_3Dstatic(cell_i, track, cog, features,
mask_total, field_contour,
field_filled, axes=None,
xlim=None, ylim=None, la-
bel_field_contour=None,
cmap_field_contour=’Blues’,
norm_field_contour=None,
linewidths_contour=0.8,
contour_labels=False,
vmin_field_contour=0,
vmax_field_contour=50, lev-
els_field_contour=None,
nlevels_field_contour=10,
label_field_filled=None,
cmap_field_filled=’summer’,
norm_field_filled=None,
vmin_field_filled=0,
vmax_field_filled=100,
levels_field_filled=None,
nlevels_field_filled=10, title=None,
feature_number=False, ele=10.0,
azim=210.0)

Make plots for cell in fixed frame and with one background field as filling and one background field as contrours
Input: Output:

80 Chapter 19. tobac package



tobac

tobac.plotting.plot_mask_cell_individual_follow(cell_i, track, cog, features,
mask_total, field_contour, field_filled,
axes=None, width=10000,
label_field_contour=None,
cmap_field_contour=’Blues’,
norm_field_contour=None,
linewidths_contour=0.8,
contour_labels=False,
vmin_field_contour=0,
vmax_field_contour=50, lev-
els_field_contour=None,
nlevels_field_contour=10,
label_field_filled=None,
cmap_field_filled=’summer’,
norm_field_filled=None,
vmin_field_filled=0,
vmax_field_filled=100,
levels_field_filled=None,
nlevels_field_filled=10, title=None)

Make individual plot for cell centred around cell and with one background field as filling and one background
field as contrours Input: Output:

tobac.plotting.plot_mask_cell_individual_static(cell_i, track, cog, features,
mask_total, field_contour, field_filled,
axes=None, xlim=None, ylim=None,
label_field_contour=None,
cmap_field_contour=’Blues’,
norm_field_contour=None,
linewidths_contour=0.8,
contour_labels=False,
vmin_field_contour=0,
vmax_field_contour=50, lev-
els_field_contour=None,
nlevels_field_contour=10,
label_field_filled=None,
cmap_field_filled=’summer’,
norm_field_filled=None,
vmin_field_filled=0,
vmax_field_filled=100,
levels_field_filled=None,
nlevels_field_filled=10, title=None,
feature_number=False)

Make plots for cell in fixed frame and with one background field as filling and one background field as contrours
Input: Output:

tobac.plotting.plot_mask_cell_track_2D3Dstatic(cell, track, cog, features, mask_total,
field_contour, field_filled, width=10000,
n_extend=1, name=’test’, plot-
dir=’./’, file_format=[’png’],
figsize=(3.937007874015748,
3.937007874015748), dpi=300, ele=10,
azim=30, **kwargs)

Make plots for all cells with fixed frame including entire development of the cell and with one background field
as filling and one background field as contrours Input: Output:
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tobac.plotting.plot_mask_cell_track_3Dstatic(cell, track, cog, features, mask_total,
field_contour, field_filled, width=10000,
n_extend=1, name=’test’, plot-
dir=’./’, file_format=[’png’],
figsize=(3.937007874015748,
3.937007874015748), dpi=300, **kwargs)

Make plots for all cells with fixed frame including entire development of the cell and with one background field
as filling and one background field as contrours Input: Output:

tobac.plotting.plot_mask_cell_track_follow(cell, track, cog, features, mask_total,
field_contour, field_filled, width=10000,
name=’test’, plotdir=’./’, file_format=[’png’],
figsize=(3.937007874015748,
3.937007874015748), dpi=300, **kwargs)

Make plots for all cells centred around cell and with one background field as filling and one background field as
contrours Input: Output:

tobac.plotting.plot_mask_cell_track_static(cell, track, cog, features, mask_total,
field_contour, field_filled, width=10000,
n_extend=1, name=’test’, plot-
dir=’./’, file_format=[’png’],
figsize=(3.937007874015748,
3.937007874015748), dpi=300, **kwargs)

Make plots for all cells with fixed frame including entire development of the cell and with one background field
as filling and one background field as contrours Input: Output:

tobac.plotting.plot_mask_cell_track_static_timeseries(cell, track, cog, fea-
tures, mask_total,
field_contour, field_filled,
track_variable=None,
variable=None, vari-
able_ylabel=None, vari-
able_label=[None],
variable_legend=False,
variable_color=None,
width=10000, n_extend=1,
name=’test’, plotdir=’./’,
file_format=[’png’], fig-
size=(7.874015748031496,
3.937007874015748),
dpi=300, **kwargs)

Make plots for all cells with fixed frame including entire development of the cell and with one background field
as filling and one background field as contrours Input: Output:

tobac.plotting.plot_tracks_mask_field(track, field, mask, features, axes=None,
axis_extent=None, plot_outline=True,
plot_marker=True, marker_track=’x’,
markersize_track=4, plot_number=True,
plot_features=False, marker_feature=None,
markersize_feature=None, title=None, ti-
tle_str=None, vmin=None, vmax=None, n_levels=50,
cmap=’viridis’, extend=’neither’, orienta-
tion_colorbar=’horizontal’, pad_colorbar=0.05,
label_colorbar=None, fraction_colorbar=0.046,
rasterized=True, linewidth_contour=1)

Plot field, features and segments of a timeframe and on a map projection. It is required to pass vmin, vmax, axes
and axis_extent as keyword arguments.
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Parameters

• track (pandas.DataFrame) – One or more timeframes of a dataframe generated by
linking_trackpy.

• field (iris.cube.Cube) – One frame/time step of the original input data.

• mask (iris.cube.Cube) – One frame/time step of the Cube containing mask (int id for
tracked volumes 0 everywhere else), output of the segmentation step.

• features (pandas.DataFrame) – Output of the feature detection, one or more
frames/time steps.

• axes (cartopy.mpl.geoaxes.GeoAxesSubplot) – GeoAxesSubplot to use for
plotting. Default is None.

• axis_extent (ndarray) – Array containing the bounds of the longitude and latitude
values. The structure is [long_min, long_max, lat_min, lat_max]. Default is None.

• plot_outline (bool, optional) – Boolean defining whether the outlines of the
segments are plotted. Default is True.

• plot_marker (bool, optional) – Boolean defining whether the positions of the fea-
tures from the track dataframe are plotted. Default is True.

• marker_track (str, optional) – String defining the shape of the marker for the
feature positions from the track dataframe. Default is ‘x’.

• markersize_track (int, optional) – Int defining the size of the marker for the
feature positions from the track dataframe. Default is 4.

• plot_number (bool, optional) – Boolean defining wether the index of the cells is
plotted next to the individual feature position. Default is True.

• plot_features (bool, optional) – Boolean defining wether the positions of the
features from the features dataframe are plotted. Default is True.

• marker_feature (optional) – String defining the shape of the marker for the feature
positions from the features dataframe. Default is None.

• markersize_feature (optional) – Int defining the size of the marker for the feature
positions from the features dataframe. Default is None.

• title (str, optional) – Flag determining the title of the plot. ‘datestr’ uses date and
time of the field. None sets not title. Default is None.

• title_str (str, optional) – Additional string added to the beginning of the title.
Default is None.

• vmin (float) – Lower bound of the colorbar. Default is None.

• vmax (float) – Upper bound of the colorbar. Default is None.

• n_levels (int, optional) – Number of levels of the contour plot of the field. Default
is 50.

• cmap ({'viridis',..}, optional) – Colormap of the countour plot of the field.
matplotlib.colors. Default is ‘viridis’.

• extend (str, optional) – Determines the coloring of values that are outside the lev-
els range. If ‘neither’, values outside the levels range are not colored. If ‘min’, ‘max’ or
‘both’, color the values below, above or below and above the levels range. Values below
min(levels) and above max(levels) are mapped to the under/over values of the Colormap.
Default is ‘neither’.

19.6. tobac.plotting module 83



tobac

• orientation_colorbar (str, optional) – Orientation of the colorbar, ‘horizon-
tal’ or ‘vertical’ Default is ‘horizontal’.

• pad_colorbar (float, optional) – Fraction of original axes between colorbar and
new image axes. Default is 0.05.

• label_colorbar (str, optional) – Label of the colorbar. If none, name and unit
of the field are used. Default is None.

• fraction_colorbar (float, optional) – Fraction of original axes to use for col-
orbar. Default is 0.046.

• rasterized (bool, optional) – True enables, False disables rasterization. Default
is True.

• linewidth_contour (int, optional) – Linewidth of the contour plot of the seg-
ments. Default is 1.

Returns axes – Axes with the plot.

Return type cartopy.mpl.geoaxes.GeoAxesSubplot

Raises ValueError – If axes are not cartopy.mpl.geoaxes.GeoAxesSubplot.

If mask.ndim is neither 2 nor 3.

tobac.plotting.plot_tracks_mask_field_loop(track, field, mask, features,
axes=None, name=None, plot_dir=’./’,
figsize=(3.937007874015748,
3.937007874015748), dpi=300, mar-
gin_left=0.05, margin_right=0.05, mar-
gin_bottom=0.05, margin_top=0.05,
**kwargs)

Plot field, feature positions and segments onto individual maps for all timeframes and save them as pngs.

Parameters

• track (pandas.DataFrame) – Output of linking_trackpy.

• field (iris.cube.Cube) – Original input data.

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0 every-
where else). Output of the segmentation step.

• features (pandas.DataFrame) – Output of the feature detection.

• axes (cartopy.mpl.geoaxes.GeoAxesSubplot, optional) – Not used. De-
fault is None.

• name (str, optional) – Filename without file extension. Same for all pngs. If None,
the name of the field is used. Default is None.

• plot_dir (str, optional) – Path where the plots will be saved. Default is ‘./’.

• figsize (tuple of floats, optional) – Width, height of the plot in inches. De-
fault is (10/2.54, 10/2.54).

• dpi (int, optional) – Plot resolution. Default is 300.

• margin_left (float, optional) – The position of the left edge of the axes, as a
fraction of the figure width. Default is 0.05.

• margin_right (float, optional) – The position of the right edge of the axes, as a
fraction of the figure width. Default is 0.05.
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• margin_bottom (float, optional) – The position of the bottom edge of the axes,
as a fraction of the figure width. Default is 0.05.

• margin_top (float, optional) – The position of the top edge of the axes, as a
fraction of the figure width. Default is 0.05.

• **kwargs –

Returns

Return type None

19.7 tobac.segmentation module

Provide segmentation techniques.

Segmentation techniques are used to associate areas or volumes to each identified feature. The segmentation is imple-
mented using watershedding techniques from the field of image processing with a fixed threshold value. This value
has to be set specifically for every type of input data and application. The segmentation can be performed for both
two-dimensional and three-dimensional data. At each timestep, a marker is set at the position (weighted mean center)
of each feature identified in the detection step in an array otherwise filled with zeros. In case of the three-dimentional
watershedding, all cells in the column above the weighted mean center position of the identified features fulfilling the
threshold condition are set to the respective marker. The algorithm then fills the area (2D) or volume (3D) based on the
input field starting from these markers until reaching the threshold. If two or more features are directly connected, the
border runs along the watershed line between the two regions. This procedure creates a mask that has the same form
as the input data, with the corresponding integer number at all grid points that belong to a feature, else with zero. This
mask can be conveniently and efficiently used to select the volume of each feature at a specific time step for further
analysis or visialization.

References

tobac.segmentation.segmentation(features, field, dxy, threshold=0.003, target=’maximum’,
level=None, method=’watershed’, max_distance=None, verti-
cal_coord=’auto’)

Use watershedding to determine region above a threshold value around initial seeding position for all time steps
of the input data. Works both in 2D (based on single seeding point) and 3D and returns a mask with zeros
everywhere around the identified regions and the feature id inside the regions.

Calls segmentation_timestep at each individal timestep of the input data.

Parameters

• features (pandas.DataFrame) – Output from trackpy/maketrack.

• field (iris.cube.Cube) – Containing the field to perform the watershedding on.

• dxy (float) – Grid spacing of the input data.

• threshold (float, optional) – Threshold for the watershedding field to be used
for the mask. Default is 3e-3.

• target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking
is targetting minima or maxima in the data. Default is ‘maximum’.

• level (slice of iris.cube.Cube, optional) – Levels at which to seed the
cells for the watershedding algorithm. Default is None.

• method ({'watershed'}, optional) – Flag determining the algorithm to use (cur-
rently watershedding implemented). ‘random_walk’ could be uncommented.
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• max_distance (float, optional) – Maximum distance from a marker allowed to
be classified as belonging to that cell. Default is None.

• vertical_coord ({'auto', 'z', 'model_level_number',
'altitude',) – ‘geopotential_height’}, optional Name of the vertical coordinate
for use in 3D segmentation case

Returns

• segmentation_out (iris.cube.Cube) – Mask, 0 outside and integer numbers according to
track inside the area/volume of the feature.

• features_out (pandas.DataFrame) – Feature dataframe including the number of cells (2D
or 3D) in the segmented area/volume of the feature at the timestep.

Raises ValueError – If field_in.ndim is neither 3 nor 4 and ‘time’ is not included in coords.

tobac.segmentation.segmentation_2D(features, field, dxy, threshold=0.003, target=’maximum’,
level=None, method=’watershed’, max_distance=None)

Wrapper for the segmentation()-function.

tobac.segmentation.segmentation_3D(features, field, dxy, threshold=0.003, target=’maximum’,
level=None, method=’watershed’, max_distance=None)

Wrapper for the segmentation()-function.

tobac.segmentation.segmentation_timestep(field_in, features_in, dxy, thresh-
old=0.003, target=’maximum’, level=None,
method=’watershed’, max_distance=None,
vertical_coord=’auto’)

Perform watershedding for an individual time step of the data. Works for both 2D and 3D data

Parameters

• field_in (iris.cube.Cube) – Input field to perform the watershedding on (2D or 3D
for one specific point in time).

• features_in (pandas.DataFrame) – Features for one specific point in time.

• dxy (float) – Grid spacing of the input data in metres

• threshold (float, optional) – Threshold for the watershedding field to be used
for the mask. Default is 3e-3.

• target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking
is targetting minima or maxima in the data to determine from which direction to approach
the threshold value. Default is ‘maximum’.

• level (slice of iris.cube.Cube, optional) – Levels at which to seed the
cells for the watershedding algorithm. Default is None.

• method ({'watershed'}, optional) – Flag determining the algorithm to use (cur-
rently watershedding implemented). ‘random_walk’ could be uncommented.

• max_distance (float, optional) – Maximum distance from a marker allowed to
be classified as belonging to that cell. Default is None.

• vertical_coord (str, optional) – Vertical coordinate in 3D input data. If ‘auto’,
input is checked for one of {‘z’, ‘model_level_number’, ‘altitude’,’geopotential_height’} as
a likely coordinate name

Returns

• segmentation_out (iris.cube.Cube) – Mask, 0 outside and integer numbers according to
track inside the ojects.
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• features_out (pandas.DataFrame) – Feature dataframe including the number of cells (2D
or 3D) in the segmented area/volume of the feature at the timestep.

Raises ValueError – If target is neither ‘maximum’ nor ‘minimum’.

If vertical_coord is not in {‘auto’, ‘z’, ‘model_level_number’, ‘altitude’, geopoten-
tial_height’}.

If there is more than one coordinate name.

If the spatial dimension is neither 2 nor 3.

If method is not ‘watershed’.

tobac.segmentation.watershedding_2D(track, field_in, **kwargs)
Wrapper for the segmentation()-function.

tobac.segmentation.watershedding_3D(track, field_in, **kwargs)
Wrapper for the segmentation()-function.

19.8 tobac.testing module

Containing methods to make simple sample data for testing.

tobac.testing.generate_single_feature(start_h1, start_h2, start_v=None, spd_h1=1,
spd_h2=1, spd_v=1, min_h1=0, max_h1=1000,
min_h2=0, max_h2=1000, num_frames=1,
dt=datetime.timedelta(seconds=300),
start_date=datetime.datetime(2022, 1, 1, 0, 0),
frame_start=1, feature_num=1)

Function to generate a dummy feature dataframe to test the tracking functionality

Parameters

• start_h1 (float) – Starting point of the feature in hdim_1 space

• start_h2 (float) – Starting point of the feature in hdim_2 space

• start_v (float, optional) – Starting point of the feature in vdim space (if 3D). For
2D, set to None. Default is None

• spd_h1 (float, optional) – Speed (per frame) of the feature in hdim_1 Default is 1

• spd_h2 (float, optional) – Speed (per frame) of the feature in hdim_2 Default is 1

• spd_v (float, optional) – Speed (per frame) of the feature in vdim Default is 1

• min_h1 (int, optional) – Minimum value of hdim_1 allowed. If PBC_flag is not
‘none’, then this will be used to know when to wrap around periodic boundaries. If PBC_flag
is ‘none’, features will disappear if they are above/below these bounds. Default is 0

• max_h1 (int, optional) – Similar to min_h1, but the max value of hdim_1 allowed.
Default is 1000

• min_h2 (int, optional) – Similar to min_h1, but the minimum value of hdim_2 al-
lowed. Default is 0

• max_h2 (int, optional) – Similar to min_h1, but the maximum value of hdim_2
allowed. Default is 1000

• num_frames (int, optional) – Number of frames to generate Default is 1
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• dt (datetime.timedelta, optional) – Difference in time between each frame
Default is datetime.timedelta(minutes=5)

• start_date (datetime.datetime, optional) – Start datetime Default is date-
time.datetime(2022, 1, 1, 0)

• frame_start (int, optional) – Number to start the frame at Default is 1

• feature_num (int, optional) – What number to start the feature at Default is 1

tobac.testing.make_dataset_from_arr(in_arr, data_type=’xarray’, time_dim_num=None,
z_dim_num=None, y_dim_num=0, x_dim_num=1)

Makes a dataset (xarray or iris) for feature detection/segmentation from a raw numpy/dask/etc. array.

Parameters

• in_arr (array-like) – The input array to convert to iris/xarray

• data_type (str('xarray' or 'iris'), optional) – Type of the dataset to
return Default is ‘xarray’

• time_dim_num (int or None, optional) – What axis is the time dimension on,
None for a single timestep Default is None

• z_dim_num (int or None, optional) – What axis is the z dimension on, None for
a 2D array Default is None

• y_dim_num (int, optional) – What axis is the y dimension on, typically 0 for a 2D
array Default is 0

• x_dim_num (int, optional) – What axis is the x dimension on, typically 1 for a 2D
array Default is 1

Returns

Return type Iris or xarray dataset with everything we need for feature detection/tracking.

tobac.testing.make_feature_blob(in_arr, h1_loc, h2_loc, v_loc=None, h1_size=1, h2_size=1,
v_size=1, shape=’rectangle’, amplitude=1)

Function to make a defined “blob” in location (zloc, yloc, xloc) with user-specified shape and amplitude. Note
that this function will round the size and locations to the nearest point within the array.

Parameters

• in_arr (array-like) – input array to add the “blob” to

• h1_loc (float) – Center hdim_1 location of the blob, required

• h2_loc (float) – Center hdim_2 location of the blob, required

• v_loc (float, optional) – Center vdim location of the blob, optional. If this is
None, we assume that the dataset is 2D. Default is None

• h1_size (float, optional) – Size of the bubble in array coordinates in hdim_1
Default is 1

• h2_size (float, optional) – Size of the bubble in array coordinates in hdim_2
Default is 1

• v_size (float, optional) – Size of the bubble in array coordinates in vdim Default
is 1

• shape (str('rectangle'), optional) – The shape of the blob that is added. For
now, this is just rectangle ‘rectangle’ adds a rectangular/rectangular prism bubble with con-
stant amplitude amplitude. Default is “rectangle”
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• amplitude (float, optional) – Maximum amplitude of the blob Default is 1

Returns An array with the same type as in_arr that has the blob added.

Return type array-like

tobac.testing.make_sample_data_2D_3blobs(data_type=’iris’)
Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions and 100 grid cells in x direction and 200 in y
direction. Time resolution is 1 minute and the total length of the dataset is 100 minutes around a arbitrary date
(2000-01-01 12:00). The longitude and latitude coordinates are added as 2D aux coordinates and arbitrary, but
in realisitic range. The data contains three individual blobs travelling on a linear trajectory through the dataset
for part of the time.

Parameters data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset
that will be produced. Default is ‘iris’

Returns sample_data

Return type iris.cube.Cube or xarray.DataArray

tobac.testing.make_sample_data_2D_3blobs_inv(data_type=’iris’)
Create a version of the dataset with switched coordinates.

Create a version of the dataset created in the function make_sample_cube_2D, but with switched coordinate
order for the horizontal coordinates for tests to ensure that this does not affect the results.

Parameters data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset
that will be produced. Default is ‘iris’

Returns sample_data

Return type iris.cube.Cube or xarray.DataArray

tobac.testing.make_sample_data_3D_3blobs(data_type=’iris’, invert_xy=False)
Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions and 100 grid cells in x direction and 200 in y
direction. Time resolution is 1 minute and the total length of the dataset is 100 minutes around a abritraty date
(2000-01-01 12:00). The longitude and latitude coordinates are added as 2D aux coordinates and arbitrary, but
in realisitic range. The data contains three individual blobs travelling on a linear trajectory through the dataset
for part of the time.

Parameters

• data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset that
will be produced. Default is ‘iris’

• invert_xy (bool, optional) – Flag to determine wether to switch x and y coordi-
nates Default is False

Returns sample_data

Return type iris.cube.Cube or xarray.DataArray

tobac.testing.make_simple_sample_data_2D(data_type=’iris’)
Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions and 100 grid cells in x direction and 500 in y
direction. Time resolution is 1 minute and the total length of the dataset is 100 minutes around a abritraty date
(2000-01-01 12:00). The longitude and latitude coordinates are added as 2D aux coordinates and arbitrary, but
in realisitic range. The data contains a single blob travelling on a linear trajectory through the dataset for part of
the time.
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Parameters data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset
that will be produced. Default is ‘iris’

Returns sample_data

Return type iris.cube.Cube or xarray.DataArray

tobac.testing.set_arr_2D_3D(in_arr, value, start_h1, end_h1, start_h2, end_h2, start_v=None,
end_v=None)

Function to set part of in_arr for either 2D or 3D points to value. If start_v and end_v are not none, we assume
that the array is 3D. If they are none, we will set the array as if it is a 2D array.

Parameters

• in_arr (array-like) – Array of values to set

• value (int, float, or array-like of size (end_v-start_v,
end_h1-start_h1, end_h2-start_h2)) – The value to assign to in_arr.
This will work to assign an array, but the array must have the same dimensions as the size
specified in the function.

• start_h1 (int) – Start index to set for hdim_1

• end_h1 (int) – End index to set for hdim_1 (exclusive, so it acts like [start_h1:end_h1])

• start_h2 (int) – Start index to set for hdim_2

• end_h2 (int) – End index to set for hdim_2

• start_v (int, optional) – Start index to set for vdim Default is None

• end_v (int, optional) – End index to set for vdim Default is None

Returns in_arr with the new values set.

Return type array-like

19.9 tobac.tracking module

Provide tracking methods.

The individual features and associated area/volumes identified in each timestep have to be linked into trajectories
to analyse the time evolution of their properties for a better understanding of the underlying physical processes. The
implementations are structured in a way that allows for the future addition of more complex tracking methods recording
a more complex network of relationships between features at different points in time.

References

tobac.tracking.add_cell_time(t)
add cell time as time since the initiation of each cell

Parameters t (pandas.DataFrame) – trajectories with added coordinates

Returns t – trajectories with added cell time

Return type pandas.Dataframe

tobac.tracking.fill_gaps(t, order=1, extrapolate=0, frame_max=None, hdim_1_max=None,
hdim_2_max=None)

Add cell time as time since the initiation of each cell.

Parameters
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• t (pandas.DataFrame) – Trajectories from trackpy.

• order (int, optional) – Order of polynomial used to extrapolate trajectory into gaps
and beyond start and end point. Default is 1.

• extrapolate (int, optional) – Number or timesteps to extrapolate trajectories.
Default is 0.

• frame_max (int, optional) – Size of input data along time axis. Default is None.

• hdim2_max (hdim_1_max,) – Size of input data along first and second horizontal axis.
Default is None.

Returns t – Trajectories from trackpy with with filled gaps and potentially extrapolated.

Return type pandas.DataFrame

tobac.tracking.linking_trackpy(features, field_in, dt, dxy, v_max=None, d_max=None,
d_min=None, subnetwork_size=None, memory=0,
stubs=1, time_cell_min=None, order=1, ex-
trapolate=0, method_linking=’random’, adap-
tive_step=None, adaptive_stop=None, cell_number_start=1,
cell_number_unassigned=-1)

Perform Linking of features in trajectories.

The linking determines which of the features detected in a specific timestep is most likely identical to an existing
feature in the previous timestep. For each existing feature, the movement within a time step is extrapolated based
on the velocities in a number previous time steps. The algorithm then breaks the search process down to a few
candidate features by restricting the search to a circular search region centered around the predicted position of
the feature in the next time step. For newly initialized trajectories, where no velocity from previous time steps
is available, the algorithm resorts to the average velocity of the nearest tracked objects. v_max and d_min are
given as physical quantities and then converted into pixel-based values used in trackpy. This allows for tracking
that is controlled by physically-based parameters that are independent of the temporal and spatial resolution of
the input data. The algorithm creates a continuous track for the feature that is the most probable based on the
previous cell path.

Parameters

• features (pandas.DataFrame) – Detected features to be linked.

• field_in (xarray.DataArray) – Input field to perform the watershedding on (2D or
3D for one specific point in time).

• dt (float) – Time resolution of tracked features.

• dxy (float) – Grid spacing of the input data.

• d_max (float, optional) – Maximum search range Default is None.

• d_min (float, optional) – Variations in the shape of the regions used to determine
the positions of the features can lead to quasi-instantaneous shifts of the position of the
feature by one or two grid cells even for a very high temporal resolution of the input data,
potentially jeopardising the tracking procedure. To prevent this, tobac uses an additional
minimum radius of the search range. Default is None.

• subnetwork_size (int, optional) – Maximum size of subnetwork for linking.
This parameter should be adjusted when using adaptive search. Usually a lower value is
desired in that case. For a more in depth explanation have look here If None, 30 is used for
regular search and 15 for adaptive search. Default is None.

• v_max (float, optional) – Speed at which features are allowed to move. Default is
None.
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• memory (int, optional) – Number of output timesteps features allowed to vanish for
to be still considered tracked. Default is 0. .. warning :: This parameter should be used with
caution, as it

can lead to erroneous trajectory linking, espacially for data with low time resolution.

• stubs (int, optional) – Minimum number of timesteps of a tracked cell to be re-
ported Default is 1

• time_cell_min (float, optional) – Minimum length in time of tracked cell to be
reported in minutes Default is None.

• order (int, optional) – Order of polynomial used to extrapolate trajectory into gaps
and ond start and end point. Default is 1.

• extrapolate (int, optional) – Number or timesteps to extrapolate trajectories.
Default is 0.

• method_linking ({'random', 'predict'}, optional) – Flag choosing
method used for trajectory linking. Default is ‘random’.

• adaptive_step (float, optional) – Reduce search range by multiplying it by this
factor. Needs to be used in combination with adaptive_stop. Default is None.

• adaptive_stop (float, optional) – If not None, when encountering an oversize
subnet, retry by progressively reducing search_range by multiplying with adaptive_step un-
til the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a
SubnetOversizeException. Needs to be used in combination with adaptive_step. Default is
None.

• cell_number_start (int, optional) – Cell number for first tracked cell. Default
is 1

• cell_number_unassigned (int) – Number to set the unassigned/non-tracked cells
to. Note that if you set this to np.nan, the data type of ‘cell’ will change to float. Default is
-1

Returns trajectories_final – Dataframe of the linked features, containing the variable ‘cell’, with
integers indicating the affiliation of a feature to a specific track, and the variable ‘time_cell’ with
the time the cell has already existed.

Return type pandas.DataFrame

Raises ValueError – If method_linking is neither ‘random’ nor ‘predict’.

19.10 tobac.utils module

tobac.utils.add_coordinates(t, variable_cube)
Add coordinates from the input cube of the feature detection to the trajectories/features.

Parameters

• t (pandas.DataFrame) – Trajectories/features from feature detection or linking step.

• variable_cube (iris.cube.Cube) – Input data used for the tracking with coordi-
nate information to transfer to the resulting DataFrame. Needs to contain the coordinate
‘time’.

Returns t – Trajectories with added coordinates.

Return type pandas.DataFrame
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tobac.utils.column_mask_from2D(mask_2D, cube, z_coord=’model_level_number’)
Turn 2D watershedding mask into a 3D mask of selected columns.

Parameters

• cube (iris.cube.Cube) – Data cube.

• mask_2D (iris.cube.Cube) – 2D cube containing mask (int id for tacked volumes 0
everywhere else).

• z_coord (str) – Name of the vertical coordinate in the cube.

Returns mask_2D – 3D cube containing columns of 2D mask (int id for tracked volumes, 0 every-
where else).

Return type iris.cube.Cube

tobac.utils.combine_tobac_feats(list_of_feats, preserve_old_feat_nums=None)
Function to combine a list of tobac feature detection dataframes into one combined dataframe that can be used
for tracking or segmentation.

Parameters

• list_of_feats (array-like of Pandas DataFrames) – A list of dataframes
(generated, for example, by running feature detection on multiple nodes).

• preserve_old_feat_nums (str or None) – The column name to preserve old fea-
ture numbers in. If None, these old numbers will be deleted. Users may want to enable this
feature if they have run segmentation with the separate dataframes and therefore old feature
numbers.

Returns One combined DataFrame.

Return type pd.DataFrame

tobac.utils.compress_all(nc_grids, min_dims=2, comp_level=4)
The purpose of this subroutine is to compress the netcdf variables as they are saved. This does not change the
data, but sets netcdf encoding parameters. We allocate a minimum number of dimensions as variables with
dimensions under the minimum value do not benefit from tangibly from this encoding.

Parameters

• nc_grids (xarray.core.dataset.Dataset) – Xarray dataset that is intended to
be exported as netcdf

• min_dims (integer) – The minimum number of dimesnions, in integer value, a variable
must have in order set the netcdf compression encoding.

• comp_level (integer) – The level of compression. Default values is 4.

Returns nc_grids – Xarray dataset with netcdf compression encoding for variables with two (2) or
more dimensions

Return type xarray.core.dataset.Dataset

tobac.utils.get_bounding_box(x, buffer=1)
Finds the bounding box of a ndarray, i.e. the smallest bounding rectangle for nonzero values as explained here:
https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array

Parameters

• x (numpy.ndarray) – Array for which the bounding box is to be determined.

• buffer (int, optional) – Number to set a buffer between the nonzero values and the
edges of the box. Default is 1.
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Returns bbox – Dimensionwise list of the indices representing the edges of the bounding box.

Return type list

tobac.utils.get_indices_of_labels_from_reg_prop_dict(region_property_dict)
Function to get the x and y indices (as well as point count) of all labeled regions.

Parameters region_property_dict (dict of region_property objects) – This
dict should come from the get_label_props_in_dict function.

Returns

• curr_loc_indices (dict) – The number of points in the label number (key: label number).

• y_indices (dict) – The y indices in the label number (key: label number).

• x_indices (dict) – The x indices in the label number (key: label number).

Raises ValueError – A ValueError is raised if there are no regions in the region property dict.

tobac.utils.get_label_props_in_dict(labels)
Function to get the label properties into a dictionary format.

Parameters labels (2D array-like) – Output of the skimage.measure.label function.

Returns region_properties_dict – Output from skimage.measure.regionprops in dictionary format,
where they key is the label number.

Return type dict

tobac.utils.get_spacings(field_in, grid_spacing=None, time_spacing=None)
Determine spatial and temporal grid spacing of the input data.

Parameters

• field_in (iris.cube.Cube) – Input field where to get spacings.

• grid_spacing (float, optional) – Manually sets the grid spacing if specified.
Default is None.

• time_spacing (float, optional) – Manually sets the time spacing if specified.
Default is None.

Returns

• dxy (float) – Grid spacing in metres.

• dt (float) – Time resolution in seconds.

Raises ValueError – If input_cube does not contain projection_x_coord and projection_y_coord
or keyword argument grid_spacing.

tobac.utils.mask_all_surface(mask, masked=False, z_coord=’model_level_number’)
Create surface projection of 3d-mask for all features by collapsing one coordinate.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False

• z_coord (str, optional) – Name of the coordinate to collapse. Default is
‘model_level_number’.
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Returns mask_i_surface – Collapsed Masked cube for the features with the maximum value along
the collapsed coordinate.

Return type iris.cube.Cube (2D)

tobac.utils.mask_cell(mask, cell, track, masked=False)
Create mask for specific cell.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 every-
where else).

• cell (int) – Integer id of cell to create masked cube for.

• track (pandas.DataFrame) – Output of the linking.

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False.

Returns mask_i – Mask for a specific cell.

Return type numpy.ndarray

tobac.utils.mask_cell_columns(mask, cell, track, masked=False,
z_coord=’model_level_number’)

Create mask with entire columns for individual cell.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

• cell (int) – Interger id of cell to create the masked cube for.

• track (pandas.DataFrame) – Output of the linking.

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False.

• z_coord (str, optional) – Default is ‘model_level_number’.

Returns mask_i – Masked cube for untracked volume.

Return type iris.cube.Cube

Notes

Function is not working since mask_features_columns() is commented out

tobac.utils.mask_cell_surface(mask, cell, track, masked=False,
z_coord=’model_level_number’)

Create surface projection of 3d-mask for individual cell by collapsing one coordinate.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0 every-
where else).

• cell (int) – Integer id of cell to create masked cube for.

• track (pandas.DataFrame) – Output of the linking.

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False.
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• z_coord (str, optional) – Name of the coordinate to collapse. Default is
‘model_level_number’.

Returns mask_i_surface – Collapsed Masked cube for the cell with the maximum value along the
collapsed coordinate.

Return type iris.cube.Cube

tobac.utils.mask_cube(cube_in, mask)
Mask cube where mask is not zero.

Parameters

• cube_in (iris.cube.Cube) – Unmasked data cube.

• mask (iris.cube.Cube) – Mask to use for masking, >0 where cube is supposed to be
masked.

Returns variable_cube_out – Masked cube.

Return type iris.cube.Cube

tobac.utils.mask_cube_all(variable_cube, mask)
Mask cube (iris.cube) for tracked volume.

Parameters

• variable_cube (iris.cube.Cube) – Unmasked data cube.

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

Returns variable_cube_out – Masked cube for untracked volume.

Return type iris.cube.Cube

tobac.utils.mask_cube_cell(variable_cube, mask, cell, track)
Mask cube for tracked volume of an individual cell.

Parameters

• variable_cube (iris.cube.Cube) – Unmasked data cube.

• mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes, 0 every-
where else).

• cell (int) – Integer id of cell to create masked cube for.

• track (pandas.DataFrame) – Output of the linking.

Returns variable_cube_out – Masked cube with data for respective cell.

Return type iris.cube.Cube

tobac.utils.mask_cube_features(variable_cube, mask, feature_ids)
Mask cube for tracked volume of one or more specific features.

Parameters

• variable_cube (iris.cube.Cube) – Unmasked data cube.

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0 every-
where else).

• feature_ids (int or list of ints) – Integer ids of features to create masked
cube for.

Returns variable_cube_out – Masked cube with data for respective features.
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Return type iris.cube.Cube

tobac.utils.mask_cube_untracked(variable_cube, mask)
Mask cube (iris.cube) for untracked volume.

Parameters

• variable_cube (iris.cube.Cube) – Unmasked data cube.

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

Returns variable_cube_out – Masked cube for untracked volume.

Return type iris.cube.Cube

tobac.utils.mask_features(mask, feature_ids, masked=False)
Create mask for specific features.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

• feature_ids (int or list of ints) – Integer ids of the features to create the
masked cube for.

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False.

Returns mask_i – Masked cube for specific features.

Return type numpy.ndarray

tobac.utils.mask_features_surface(mask, feature_ids, masked=False,
z_coord=’model_level_number’)

Create surface projection of 3d-mask for specific features by collapsing one coordinate.

Parameters

• mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 every-
where else).

• feature_ids (int or list of ints) – Integer ids of the features to create the
masked cube for.

• masked (bool, optional) – Bool determining whether to mask the mask for the cell
where it is 0. Default is False

• z_coord (str, optional) – Name of the coordinate to collapse. Default is
‘model_level_number’.

Returns mask_i_surface – Collapsed Masked cube for the features with the maximum value along
the collapsed coordinate.

Return type iris.cube.Cube

tobac.utils.spectral_filtering(dxy, field_in, lambda_min, lambda_max, re-
turn_transfer_function=False)

This function creates and applies a 2D transfer function that can be used as a bandpass filter to remove certain
wavelengths of an atmospheric input field (e.g. vorticity, IVT, etc).

dxy [float] Grid spacing in m.

field_in: numpy.array 2D field with input data.

lambda_min: float Minimum wavelength in m.
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lambda_max: float Maximum wavelength in m.

return_transfer_function: boolean, optional default: False. If set to True, then the 2D transfer function and
the corresponding wavelengths are returned.

filtered_field: numpy.array Spectrally filtered 2D field of data (with same shape as input data).

transfer_function: tuple Two 2D fields, where the first one corresponds to the wavelengths in the spectral
space of the domain and the second one to the 2D transfer function of the bandpass filter. Only returned,
if return_transfer_function is True.

tobac.utils.standardize_track_dataset(TrackedFeatures, Mask, Projection=None)
CAUTION: this function is experimental. No data structures output are guaranteed to be supported in future
versions of tobac.

Combine a feature mask with the feature data table into a common dataset.

returned by tobac.segmentation with the TrackedFeatures dataset returned by tobac.linking_trackpy.

Also rename the variables to be more descriptive and comply with cf-tree.

Convert the default cell parent ID to an integer table.

Add a cell dimension to reflect

Projection is an xarray DataArray

TODO: Add metadata attributes

Parameters

• TrackedFeatures (xarray.core.dataset.Dataset) – xarray dataset of tobac
Track information, the xarray dataset returned by tobac.tracking.linking_trackpy

• Mask (xarray.core.dataset.Dataset) – xarray dataset of tobac segmentation
mask information, the xarray dataset returned by tobac.segmentation.segmentation

Projection [xarray.core.dataarray.DataArray, default = None] array.DataArray of the original input dataset
(gridded nexrad data for example). If using gridded nexrad data, this can be input as:
data[‘ProjectionCoordinateSystem’] An example of the type of information in the dataarray includes the
following attributes: latitude_of_projection_origin :29.471900939941406 longitude_of_projection_origin
:-95.0787353515625 _CoordinateTransformType :Projection _CoordinateAxes :x y z time _Coordi-
nateAxesTypes :GeoX GeoY Height Time grid_mapping_name :azimuthal_equidistant semi_major_axis
:6370997.0 inverse_flattening :298.25 longitude_of_prime_meridian :0.0 false_easting :0.0 false_northing
:0.0

Returns ds – xarray dataset of merged Track and Segmentation Mask datasets with renamed vari-
ables.

Return type xarray.core.dataset.Dataset
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19.11 tobac.wrapper module

tobac.wrapper.maketrack(field_in, grid_spacing=None, time_spacing=None, target=’maximum’,
v_max=None, d_max=None, memory=0, stubs=5, order=1, extrap-
olate=0, method_detection=’threshold’, position_threshold=’center’,
sigma_threshold=0.5, n_erosion_threshold=0, threshold=1, min_num=0,
min_distance=0, method_linking=’random’, cell_number_start=1,
subnetwork_size=None, adaptive_stop=None, adaptive_step=None,
return_intermediate=False)

tobac.wrapper.tracking_wrapper(field_in_features, field_in_segmentation, time_spacing=None,
grid_spacing=None, parameters_features=None, parame-
ters_tracking=None, parameters_segmentation=None)

19.12 Module contents
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