

    
      
          
            
  


tobac - Tracking and Object-Based Analysis of Clouds

tobac is a Python package to identify, track and analyze clouds in different types of gridded datasets, such as 3D model output from cloud-resolving model simulations or 2D data from satellite retrievals.

The software is set up in a modular way to include different algorithms for feature identification, tracking, and analyses. tobac is also input variable agnostic and doesn’t rely on specific input variables, nor a specific grid to work.

In the current implementation, individual features are identified as either maxima or minima in a two-dimensional time-varying field (see Feature Detection Basics). An associated volume can then be determined using these features with a separate (or identical) time-varying 2D or 3D field and a threshold value (see Segmentation). The identified objects are linked into consistent trajectories representing the cloud over its lifecycle in the tracking step. Analysis and visualization methods provide a convenient way to use and display the tracking results.

Version 1.2 of tobac and some example applications are described in a peer-reviewed article in Geoscientific Model Development as:

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.: tobac 1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev., 12, 4551–4570, https://doi.org/10.5194/gmd-12-4551-2019, 2019.

The project is currently being extended by several contributors to include additional workflows and algorithms using the same structure, syntax, and data formats.
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Installation

tobac works with Python 3 installations.

The easiest way is to install the most recent version of tobac via conda or mamba and the conda-forge channel:

conda install -c conda-forge tobac or mamba install -c conda-forge tobac

This will take care of all necessary dependencies and should do the job for most users. It also allows for an easy update of the installation by

conda update -c conda-forge tobac mamba update -c conda-forge tobac

You can also install conda via pip, which is mainly interesting for development purposes or using specific development branches for the Github repository.

The following python packages are required (including dependencies of these packages):

numpy, scipy, scikit-image, pandas, pytables, matplotlib, iris, xarray, cartopy, trackpy

If you are using anaconda, the following command should make sure all dependencies are met and up to date:

conda install -c conda-forge -y numpy scipy scikit-image pandas pytables matplotlib iris xarray cartopy trackpy





You can directly install the package directly from github with pip and either of the two following commands:


pip install --upgrade git+ssh://git@github.com/tobac-project/tobac.git

pip install --upgrade git+https://github.com/tobac-project/tobac.git




You can also clone the package with any of the two following commands:


git clone git@github.com:tobac-project/tobac.git

git clone https://github.com/tobac-project/tobac.git




and install the package from the locally cloned version (The trailing slash is actually necessary):


pip install --upgrade tobac/







          

      

      

    

  

    
      
          
            
  


Data input

Input data for tobac should consist of one or more fields on a common, regular grid with a time dimension and two or more spatial dimensions. The input data can also include latitude and longitude coordinates, either as 1-d or 2-d variables depending on the grid used.

Interoperability with xarray is provided by the convenient functions allowing for a transformation between the two data types.
xarray DataArays can be easily converted into iris cubes using xarray’s to_iris() [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.to_iris.html] method, while the Iris cubes produced as output of tobac can be turned into xarray DataArrays using the from_iris() [http://xarray.pydata.org/en/stable/generated/xarray.DataArray.from_iris.html] method.

For the future development of the next major version of tobac (v2.0), we are moving the basic data structures from Iris cubes to xarray DataArrays for improved computing performance and interoperability with other open-source sorftware packages, including the Pangeo project (https://pangeo.io/).

The output of the different analysis steps in tobac are output as either pandas DataFrames in the case of one-dimensional data, such a lists of identified features or feature tracks or as Iris cubes in the case of 2D/3D/4D fields such as feature masks. Note that the dataframe output from tracking is a superset of the features dataframe.

For information on feature detection output, see Feature Detection Output.
For information on tracking output, see Tracking Output.

Note that in future versions of tobac, it is planned to combine both output data types into a single hierarchical data structure containing both spatial and object information. Additional information about the planned changes can be found in the v2.0-dev branch of the main tobac repository (https://github.com/tobac-project/tobac), as well as the tobac roadmap (https://github.com/tobac-project/tobac-roadmap.




          

      

      

    

  

    
      
          
            
  


Analysis

tobac provides several analysis functions that allow for the calculation of important quantities based on the tracking results. This includes the calculation of properties such as feature lifetimes and feature areas/volumes, but also allows for a convenient calculation of statistics for arbitrary fields of the same shape as as the input data used for the tracking analysis.




          

      

      

    

  

    
      
          
            
  


Plotting

tobac provides functions to conveniently visualise the tracking results and analyses.




          

      

      

    

  

    
      
          
            
  


Handling Large Datasets

Often, one desires to use tobac to identify and track features in large datasets (“big data”). This documentation strives to suggest various methods for doing so efficiently. Current versions of tobac do not allow for out-of-memory computation, meaning that these strategies may need to be employed for both computational and memory reasons.


Split Feature Detection

Current versions of threshold feature detection (see Feature Detection Basics) are time independent, meaning that one can parallelize feature detection across all times (although not across space). tobac provides the tobac.utils.combine_tobac_feats() function to combine a list of dataframes produced by a parallelization method (such as jug or multiprocessing.pool) into a single combined dataframe suitable to perform tracking with.





          

      

      

    

  

    
      
          
            
  


Example notebooks

tobac is provided with a set of Jupyter notebooks that show examples of the application of tobac for different types of datasets.

The notebooks can be found in the examples folder in the the repository. The necessary input data for these examples is avaliable on zenodo:
www.zenodo.org/…
and can be downloaded automatically by the Jupyter notebooks.

The examples currently include four different applications of tobac:
1. Tracking of scattered convection based on vertical velocity and condensate mixing ratio for 3D cloud-resolving model output.
2. Tracking of scattered convection based on surface precipitation from the same cloud-resolving model output
3. Tracking of convective clouds based on outgoing longwave radiation (OLR) for convection-permitting model simulation output
4. Tracking of convective clouds based on OLR in geostationary satellite retrievals.

The examples are based on the analyses presented in an article describing tobac that has been submitted to the journal GMD (Geophysical model development).




          

      

      

    

  

    
      
          
            
  


Refereed Publications

List of peer-reviewed publications in which tobac has been used:








	Bukowski, J., & van den Heever, S. C. (2021). Direct radiative effects in haboobs. Journal of Geophysical Research: Atmospheres, 126(21), e2021JD034814, doi:10.1029/2021JD034814.



	Bukowski, J. (2021). Mineral Dust Lofting and Interactions with Cold Pools (Doctoral dissertation, Colorado State University).



	Heikenfeld, M. (2019). Aerosol effects on microphysical processes and deep convective clouds (Doctoral dissertation, University of Oxford).



	Kukulies, J., Chen, D., & Curio, J. (2021). The role of mesoscale convective systems in precipitation in the Tibetan Plateau region. Journal of Geophysical Research: Atmospheres, 126(23), e2021JD035279. doi:10.1029/2021JD035279.



	Li, Y., Liu, Y., Chen, Y., Chen, B., Zhang, X., Wang, W. & Huo, Z. (2021). Characteristics of Deep Convective Systems and Initiation during Warm Seasons over China and Its Vicinity. Remote Sensing, 13(21), 4289. doi:10.3390/rs13214289.



	Marinescu, P. J., Van Den Heever, S. C., Heikenfeld, M., Barrett, A. I., Barthlott, C., Hoose, C., … & Zhang, Y. (2021). Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts—a multimodel assessment. Journal of the Atmospheric Sciences, 78(4), 1147-1172, doi: 10.1175/JAS-D-20-0200.1.



	Marinescu, P. J. (2020). Observations of Aerosol Particles and Deep Convective Updrafts and the Modeling of Their Interactions (Doctoral dissertation, Colorado State University).



	Raut, B. A., Jackson, R., Picel, M., Collis, S. M., Bergemann, M., & Jakob, C. (2021). An Adaptive Tracking Algorithm for Convection in Simulated and Remote Sensing Data. Journal of Applied Meteorology and Climatology, 60(4), 513-526, doi:10.1175/JAMC-D-20-0119.1.



	Whitaker, J. W. (2021). An Investigation of an East Pacific Easterly Wave Genesis Pathway and the Impact of the Papagayo and Tehuantepec Wind Jets on the East Pacific Mean State and Easterly Waves (Doctoral dissertation, Colorado State University).



	Zhang, X., Yin, Y., Kukulies, J., Li, Y., Kuang, X., He, C., .. & Chen, J. (2021). Revisiting Lightning Activity and Parameterization Using Geostationary Satellite Observations. Remote Sensing, 13(19), 3866, doi: 10.3390/rs13193866.






Have you used tobac in your research?

Please contact us (e.g. by joining our tobac google group [https://groups.google.com/g/tobac/about]) or submit a pull request containing your reference in our main repo on GitHub [https://github.com/tobac-project/tobac]!




          

      

      

    

  

    
      
          
            
  


Feature Detection Basics

The feature detection is the first step in using tobac.

Currently implemented methods:


Multiple thresholds:

Features are identified as regions above or below a sequence of subsequent thresholds (if searching for eather maxima or minima in the data). Subsequently more restrictive threshold values are used to further refine the resulting features and allow for separation of features that are connected through a continuous region of less restrictive threshold values.

[image: _images/detection_multiplethresholds.png]



Current development:
We are currently working on additional methods for the identification of cloud features in different types of datasets. Some of these methods are specific to the input data such a combination of different channels from specific satellite imagers. Some of these methods will combine the feature detection and segmentations step in one single algorithm.




          

      

      

    

  

    
      
          
            
  


Threshold Feature Detection Parameters

The proper selection of parameters used to detect features with the tobac multiple threshold feature detection is a critical first step in using tobac. This page describes the various parameters available and provides broad comments on the usage of each parameter.

A full list of parameters and descriptions can be found in the API Reference: tobac.feature_detection.feature_detection_multithreshold()


Basic Operating Procedure

The tobac multiple threshold algorithm searches the input data (field_in) for contiguous regions of data greater than (with target=’maximum’, see Target) or less than (with target=’minimum’) the selected thresholds (see Thresholds). Contiguous regions (see Minimum Threshold Number) are then identified as individual features, with a single point representing their location in the output (see Position Threshold). Using this output (see Feature Detection Output), segmentation (Segmentation) and tracking (Linking) can be run.



Target

First, you must determine whether you want to detect features on maxima or minima in your dataset. For example, if you are trying to detect clouds in IR satellite data, where clouds have relatively lower brightness temperatures than the background, you would set target='minimum'. If, instead, you are trying to detect clouds by cloud water in model data, where an increase in mixing ratio indicates the presence of a cloud, you would set target='maximum'. The target parameter will determine the selection of many of the following parameters.



Thresholds

You can select to detect features on either one or multiple thresholds. The first threshold (or the single threshold) sets the minimum magnitude (either lowest value for target='maximum' or highest value for target='minimum') that a feature can be detected on. For example, if you have a field made up of values lower than 10, and you set target='maximum', threshold=[10,], tobac will detect no features.

Including multiple thresholds will allow tobac to refine the detection of features and detect multiple features that are connected through a contiguous region of less restrictive threshold values. You can see a conceptual diagram of that here: Feature Detection Basics. To examine how setting different thresholds can change the number of features detected, see the example in this notebook: How multiple thresholds changes the features detected.



Minimum Threshold Number

The minimum number of points per threshold, set by n_min_threshold, determines how many contiguous pixels are required to be above the threshold for the feature to be detected. Setting this point very low can allow extraneous points to be detected as erroneous features, while setting this value too high will cause some real features to be missed. The default value for this parameter is 0, which will cause any values greater than the threshold after filtering to be identified as a feature. You can see a demonstration of the affect of increasing n_min_threshold at: How n_min_threshold changes what features are detected.



Feature Position

There are four ways of calculating the single point used to represent feature center: arithmetic center, extreme point, difference weighting, and absolute weighting. Generally, difference weighting (position_threshold='weighted_diff') or absolute weighting (position_threshold='weighted_abs') is suggested for most atmospheric applications. An example of these four methods is shown below, and can be further explored in the example notebook: Different threshold_position options.


[image: _images/position_thresholds.png]





Filtering Options

Before tobac detects features, two filtering options can optionally be employed. First is a multidimensional Gaussian Filter (scipy.ndimage.gaussian_filter [https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html]), with its standard deviation controlled by the sigma_threshold parameter. It is not required that users use this filter (to turn it off, set sigma_threshold=0), but the use of the filter is recommended for most atmospheric datasets that are not otherwise smoothed. An example of varying the sigma_threshold parameter can be seen in the below figure, and can be explored in the example notebook: tobac Feature Detection Filtering.


[image: _images/sigma_threshold_example.png]



The second filtering option is a binary erosion (skimage.morphology.binary_erosion [https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.morphology.binary_erosion]), which reduces the size of features in all directions. The amount of the erosion is controlled by the n_erosion_threshold parameter, with larger values resulting in smaller potential features. It is not required to use this feature (to turn it off, set n_erosion_threshold=0), and its use should be considered alongside careful selection of n_min_threshold. The default value is n_erosion_threshold=0.



Minimum Distance

The parameter min_distance sets the minimum distance between two detected features. If two detected features are within min_distance of each other, the feature with the larger value is kept, and the feature with the smaller value is discarded.





          

      

      

    

  

    
      
          
            
  


Feature Detection Parameter Examples



	How multiple thresholds changes the features detected
	Imports

	Generate Feature Data

	Single Threshold

	Multiple Thresholds





	How n_min_threshold changes what features are detected
	Imports

	Generate Feature Data

	No n_min_threshold

	Increasing n_min_threshold





	Different threshold_position options
	Imports

	Generate Feature Data

	position_threshold='center'

	position_threshold='extreme'

	position_threshold='weighted_diff'

	position_threshold='weighted_abs'

	All four methods together





	tobac Feature Detection Filtering
	Imports

	Generate Feature Data

	Gaussian Filtering (sigma_threshold parameter)

	Erosion (n_erosion_threshold parameter)












          

      

      

    

  

    
      
          
            
  


How multiple thresholds changes the features detected


Imports


[1]:





%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr









Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the surrounding (0).


[2]:





# Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_5_0.png]




We now need to generate an Iris DataCube out of this dataset to run tobac feature detection. One can use xarray to generate a DataArray and then convert it to Iris, as done here. Version 2.0 of tobac (currently in development) will allow the use of xarray directly with tobac.


[3]:





input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()











Single Threshold

Let’s say that you are looking to detect any features above value 50 and don’t need to separate out individual cells within the larger feature. For example, if you’re interested in tracking a single mesoscale convective system, you may not care about the paths of individual convective cells within the feature.


[4]:





thresholds = [50,]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Single Threshold of 50")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_10_0.png]




Now, let’s try a single threshold of 150, which will give us two features on the left side of the image.


[5]:





thresholds = [150,]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Single Threshold of 150")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_12_0.png]




This gives us two detected features with minimum values >150.





Multiple Thresholds

Now let’s say that you want to detect all three maxima within this feature. You may want to do this, if, for example, you were trying to detect overhshooting tops within a cirrus shield. You could pick a single threshold, but if you pick 100, you won’t separate out the two features on the left. For example:


[6]:





thresholds = [100, ]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Single Threshold of 100")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_16_0.png]




This is the power of having multiple thresholds. We can set thresholds of 50, 100, 150, 200 and capture both:


[7]:





thresholds = [50, 100, 150, 200]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("Thresholds: [50, 100, 150, 200]")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_18_0.png]





[8]:





thresholds = [50, 100, 150, 200, 250]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center')
plt.pcolormesh(input_field_arr[0])
plt.colorbar()

# Plot all features detected
for i, threshold in enumerate(thresholds):
    thresholded_points = single_threshold_features[single_threshold_features['threshold_value'] == threshold]
    plt.scatter(x=thresholded_points['hdim_2'].values,
                y=thresholded_points['hdim_1'].values,
                color='C'+str(i),
                label="Threshold: "+str(threshold))
plt.legend()
plt.title("Thresholds: [50, 100, 150, 200]")
plt.show()












[image: ../../_images/feature_detection_notebooks_multiple_thresholds_example_19_0.png]








          

      

      

    

  

    
      
          
            
  


How n_min_threshold changes what features are detected


Imports


[1]:





%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr









Generate Feature Data

Here, we will generate some simple feature data with a variety of features, large and small.


[2]:





# Dimensions here are time, y, x.
input_field_arr = np.zeros((1,80,80))
# small 5x5 feature, area of 25 points
input_field_arr[0, 15:20, 10:15]=50
# larger 30x30 feature, area of 900
input_field_arr[0, 40:70, 10:30]=50
# small 2x2 feature within larger 30x30 feature, area of 4 points
input_field_arr[0, 52:54, 22:24]=100
# small 4x4 feature within larger 30x30 feature, area of 16 points
input_field_arr[0, 60:64, 15:19]=100

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()












[image: ../../_images/feature_detection_notebooks_n_min_threshold_example_5_0.png]





[3]:





# We now need to generate an Iris DataCube out of this dataset to run tobac feature detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray directly with tobac.











No n_min_threshold

If we keep n_min_threshold at the default value of 0, all three features will be detected with the appropriate thresholds used.


[4]:





thresholds = [50, 100]
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center', sigma_threshold=0)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold=0")
plt.show()












[image: ../../_images/feature_detection_notebooks_n_min_threshold_example_9_0.png]








Increasing n_min_threshold

As we increase n_min_threshold, fewer of these separate features are detected. In this example, if we set n_min_threshold to 5, the smallest detected feature goes away.


[5]:





thresholds = [50, 100]
n_min_threshold = 5
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center', sigma_threshold=0,
    n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()












[image: ../../_images/feature_detection_notebooks_n_min_threshold_example_12_0.png]




If we increase n_min_threshold to 20, only the large 50-valued feature is detected, rather than the two higher-valued squares.


[6]:





thresholds = [50, 100]
n_min_threshold = 20
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center', sigma_threshold=0,
    n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()












[image: ../../_images/feature_detection_notebooks_n_min_threshold_example_14_0.png]




If we set n_min_threshold to 100, only the largest feature is detected.


[7]:





thresholds = [50, 100]
n_min_threshold = 100
# Using 'center' here outputs the feature location as the arithmetic center of the detected feature.
# All filtering is off in this example, although that is not usually recommended.
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold='center', sigma_threshold=0,
    n_min_threshold=n_min_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("n_min_threshold={0}".format(n_min_threshold))
plt.show()












[image: ../../_images/feature_detection_notebooks_n_min_threshold_example_16_0.png]








          

      

      

    

  

    
      
          
            
  


Different threshold_position options


Imports


[1]:





%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr









Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the surrounding (0).


[2]:





# Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_5_0.png]





[3]:





# We now need to generate an Iris DataCube out of this dataset to run tobac feature detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray directly with tobac.











position_threshold='center'

This option will choose the arithmetic center of the area above the threshold. This is typically not recommended for most data.


[4]:





thresholds = [50,]
position_threshold = 'center'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_9_0.png]








position_threshold='extreme'

This option will choose the most extreme point of our data. For target='maximum', this will be the largest value in the feature area.


[5]:





thresholds = [50,]
position_threshold = 'extreme'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_12_0.png]








position_threshold='weighted_diff'

This option will choose the center of the region weighted by the distance from the threshold value.


[6]:





thresholds = [50,]
position_threshold = 'weighted_diff'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_15_0.png]








position_threshold='weighted_abs'

This option will choose the center of the region weighted by the absolute values of the field.


[7]:





thresholds = [50,]
position_threshold = 'weighted_abs'
single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=position_threshold)
plt.pcolormesh(input_field_arr[0])
plt.colorbar()
# Plot all features detected
plt.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
plt.legend()
plt.title("position_threshold "+ position_threshold)
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_18_0.png]








All four methods together


[8]:





thresholds = [50,]
fig, axarr = plt.subplots(2,2, figsize=(10,6))
testing_thresholds = ['center', 'extreme', 'weighted_diff', 'weighted_abs']
for position_threshold, ax in zip(testing_thresholds, axarr.flatten()):

    single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', position_threshold=position_threshold)
    color_mesh = ax.pcolormesh(input_field_arr[0])
    plt.colorbar(color_mesh, ax=ax)
    # Plot all features detected
    ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
    ax.legend()
    ax.set_title("position_threshold "+ position_threshold)
plt.tight_layout()
plt.show()












[image: ../../_images/feature_detection_notebooks_position_threshold_example_21_0.png]








          

      

      

    

  

    
      
          
            
  


tobac Feature Detection Filtering

Often, when detecting features with tobac, it is advisable to perform some amount of filtering on the data before feature detection is processed to improve the quality of the features detected. This notebook will demonstrate the affects of the various filtering algorithms built into tobac feature detection.


Imports


[1]:





%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import tobac
import xarray as xr
import scipy.ndimage
import skimage.morphology









Generate Feature Data

Here, we will generate some simple feature data where the features that we want to detect are higher values than the surrounding (0).


[2]:





# Dimensions here are time, y, x.
input_field_arr = np.zeros((1,100,200))
input_field_arr[0, 15:85, 10:185]=50
input_field_arr[0, 20:80, 20:80]=100
input_field_arr[0, 40:60, 125:170] = 100
input_field_arr[0, 30:40, 30:40]=200
input_field_arr[0, 50:75, 50:75]=200
input_field_arr[0, 55:70, 55:70]=300

plt.pcolormesh(input_field_arr[0])
plt.colorbar()
plt.title("Base data")
plt.show()












[image: ../../_images/feature_detection_notebooks_feature_detection_filtering_6_0.png]





[3]:





# We now need to generate an Iris DataCube out of this dataset to run tobac feature detection.
# One can use xarray to generate a DataArray and then convert it to Iris, as done here.
input_field_iris = xr.DataArray(input_field_arr, dims=['time', 'Y', 'X'], coords={'time': [np.datetime64('2019-01-01T00:00:00')]}).to_iris()
# Version 2.0 of tobac (currently in development) will allow the use of xarray directly with tobac.











Gaussian Filtering (sigma_threshold parameter)

First, we will explore the use of Gaussian Filtering by varying the sigma_threshold parameter in tobac. Note that when we set the sigma_threshold high enough, the right feature isn’t detected because it doesn’t meet the higher 100 threshold; instead it is considered part of the larger parent feature that contains the high feature.


[4]:





thresholds = [50, 100, 150, 200]
fig, axarr = plt.subplots(2,2, figsize=(10,6))
sigma_values = [0, 1, 2, 5]
for sigma_value, ax in zip(sigma_values, axarr.flatten()):
    single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', sigma_threshold=sigma_value)

    # This is what tobac sees
    filtered_field = scipy.ndimage.gaussian_filter(input_field_arr[0], sigma=sigma_value)
    color_mesh = ax.pcolormesh(filtered_field)
    plt.colorbar(color_mesh, ax=ax)
    # Plot all features detected
    ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
    ax.legend()
    if sigma_value == 0:
        sigma_val_str = "0 (off)"
    else:
        sigma_val_str = "{0}".format(sigma_value)
    ax.set_title("sigma_threshold= "+ sigma_val_str)
plt.tight_layout()
plt.show()












[image: ../../_images/feature_detection_notebooks_feature_detection_filtering_10_0.png]








Erosion (n_erosion_threshold parameter)

Next, we will explore the use of the erosion filtering by varying the n_erosion_threshold parameter in tobac. This erosion process only occurrs after masking the values greater than the threshold, so it’s easiest to see this when detecting on a single threshold. As you can see, increasing the n_erosion_threshold parameter reduces the size of each of our features.


[5]:





thresholds = [100]
fig, axarr = plt.subplots(2,2, figsize=(10,6))
erosion_values = [0, 5, 10, 15]
for erosion, ax in zip(erosion_values, axarr.flatten()):
    single_threshold_features = tobac.feature_detection_multithreshold(field_in = input_field_iris, dxy = 1000, threshold=thresholds, target='maximum', n_erosion_threshold=erosion)

    # Create our mask- this is what tobac does internally for each threshold.
    tobac_mask = 1*(input_field_arr[0] >= thresholds[0])

    if erosion > 0:
        # This is the parameter for erosion that gets passed to the scikit-image library.
        footprint = np.ones((erosion, erosion))
        # This is what tobac sees after erosion.
        filtered_mask = skimage.morphology.binary_erosion(tobac_mask, selem).astype(np.int64)
    else:
        filtered_mask = tobac_mask

    color_mesh = ax.pcolormesh(filtered_mask)
    # Plot all features detected
    ax.scatter(x=single_threshold_features['hdim_2'].values, y=single_threshold_features['hdim_1'].values, color='r', label="Detected Features")
    ax.legend()
    if erosion == 0:
        sigma_val_str = "0 (off)"
    else:
        sigma_val_str = "{0}".format(erosion)
    ax.set_title("n_erosion_threshold= "+ sigma_val_str)
plt.tight_layout()
plt.show()












[image: ../../_images/feature_detection_notebooks_feature_detection_filtering_13_0.png]








          

      

      

    

  

    
      
          
            
  


Feature Detection Output

Feature detection outputs a pandas dataframe with several variables. The variables, (with column names listed in the Variable Name column), are described below with units. Note that while these variables come initially from the feature detection step, segmentation and tracking also share some of these variables as keys (e.g., the feature acts as a universal key between each of these). See Tracking Output for the additional columns added by tracking.

Variables that are common to all feature detection files:


tobac Feature Detection Output Variables







	Variable Name

	Description

	Units

	Type





	frame

	Frame/time/file number; starts from 0 and increments by 1 to N times.

	n/a

	int64



	idx

	Feature number within that frame; starts at 1, increments by 1 to the number of features for each frame, and resets to 1 when the frame increments

	n/a

	int



	hdim_1

	First horizontal dimension in grid point space (typically, although not always, N/S or y space)

	Number of grid points

	float



	hdim_2

	Second horizontal dimension in grid point space (typically, although not always, E/W or x space)

	Number of grid points

	float



	num

	Number of grid points that are within the threshold of this feature

	Number of grid points

	int



	threshold_value

	Maximum threshold value reached by the feature

	Units of the input feature

	int



	feature

	Unique number of the feature; starts from 1 and increments by 1 to the number of features identified in all frames

	n/a

	int



	time

	Time of the feature

	Date and time

	object/python datetime



	timestr

	String representation of the feature time

	YYYY-MM-DD HH:MM:SS

	object/string



	y

	Grid point y location of the feature (see hdim_1 and hdim_2). Note that this is not necessarily an integer value depending on your selection of position_threshold

	Number of grid points

	float



	x

	Grid point x location of the feature (see also y)

	Number of grid points

	float



	projection_y_coordinate

	Y location of the feature in projection coordinates

	Projection coordinates (usually m)

	float



	projection_x_coordinate

	X location of the feature in projection coodinates

	Projection coordinates (usually m)

	float



	lat

	Latitude of the feature

	Decimal degrees

	float



	lon

	Longitude of the feature

	Decimal degrees

	float









          

      

      

    

  

    
      
          
            
  


Segmentation

The segmentation step aims at associating cloud areas (2D data) or cloud volumes (3D data) with the identified and tracked features.

Currently implemented methods:


Watershedding in 2D:
Markers are set at the position of the individual feature positions identified in the detection step. Then watershedding with a fixed threshold is used to determine the area around each feature above/below that threshold value. This results in a mask with the feature id at all pixels identified as part of the clouds and zeros in all cloud free areas.

Watershedding in 3D:
Markers are set in the entire column above the individual feature positions identified in the detection step. Then watershedding with a fixed threshold is used to determine the volume around each feature above/below that threshold value. This results in a mask with the feature id at all voxels identified as part of the clouds and zeros in all cloud free areas.







          

      

      

    

  

    
      
          
            
  


Watershedding Segmentation Parameters

Appropriate parameters must be chosen to properly use the watershedding segmentation module in tobac. This page gives a brief overview of parameters available in watershedding segmentation.

A full list of parameters and descriptions can be found in the API Reference: tobac.segmentation.segmentation().


Basic Operating Procedure

The tobac watershedding segmentation algorithm selects regions of the data field with values greater than threshold and associates those regions with the features features detected by feature detection (see Feature Detection Basics). This algorithm uses a watershedding approach, which sets the individual features as initial seed points, and then has identified regions grow from those original seed points. For further information on watershedding segmentation, see the scikit-image documentation <https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_watershed.html>.

Note that you can run the watershedding segmentation algorithm on any variable that shares a grid with the variable detected in the feature detection step. It is not required that the variable used in feature detection be the same as the one in segmentation (e.g., you can detect updraft features and then run segmentation on total condensate).

Segmentation can be run on 2D or 3D input data, but segmentation on 3D data using a 2D feature detection field requires careful consideration of where the vertical seeding will occur (see Level).



Target

The target parameter works similarly to how it works in feature detection (see Threshold Feature Detection Parameters). To segment areas that are greater than threshold, use target='maximum'. To segment areas that are less than threshold, use target='minimum'.



Threshold

Unlike in multiple threshold detection in Feature Detection, Watershedding Segmentation only accepts one threshold. This value will set either the minimum (for target='maximum') or maximum (for target='minimum') value to be segmented.



Where the 3D seeds are placed for 2D feature detection

When running feature detection on a 2D dataset and then using these detected features to segment data in 3D, there is clearly no information on where to put the seeds in the vertical. This is currently controlled by the level parameter. By default, this parameter is None, which seeds the full column at every 2D detected feature point. As tobac does not run a continuity check, this can result in undesired behavior, such as clouds in multiple layers being detected as one large object.

level can also be set to a slice <https://docs.python.org/3/c-api/slice.html>, which determines where in the vertical dimension (see `Vertical Coordinate`_) the features are seeded from. Note that level operates in array coordinates rather than physical coordinates.



Maximum Distance

tobac’s watershedding segmentation allows you to set a maximum distance away from the feature to classify as a segmented region belonging to that figure. max_distance sets this distance in meters away from the detected feature to allow it to be considered part of the point. To turn this feature off, set max_distance=None.





          

      

      

    

  

    
      
          
            
  


Segmentation Output

Segmentation outputs a mask (iris.cube.Cube and in the future xarray.DataArray) with the same dimensions as the input field, where each segmented area has the same ID as its corresponding feature (see feature column in Feature Detection Output). Note that there are some cases in which a feature is not attributed to a segmented area associated with it (see Features without segmented areas).

Segmentation also outputs the same pandas dataframe as obtained by Feature Detection (see Feature Detection Basics) but with one additional column:


tobac Segmentation Output Variables







	Variable Name

	Description

	Units

	Type





	ncells

	Total number of grid points that belong to the segmented area associated with feature.

	n/a

	int64









          

      

      

    

  

    
      
          
            
  


Features without segmented areas

Not all detected features have a segmented area associated with them. Here, we show two cases in which a detected feature might
not have a segmented area associated with them (meaning that the mask file does not contain the ID of the feature of interest and ncells in the segmentation
output dataframe results in 0 grid cells. )


Case 1: Segmentation threshold

If the segmentation threshold is lower (assuming target=’minimum’) than the highest threshold specified in the Feature Detection (see Threshold Feature Detection Parameters) this could leave some features without a segmented area, simply because there are no values to be segmented.

Consider for example the following data with 5 being the highest threshold specified for the Feature Detection (see Feature Detection Basics):


[image: _images/features_without_segment.png]



If the segmentation threshold is larger than 5 (e.g.  threshold = 6), the segmented area contains all values <= 5 (still assuming target=’minimum’), no matter if the detected feature has a threshold lower than 5 (upper panels) or if it is exactly equal to 5 and does not contain any features with lower thresholds inside (lower panels).

If the segmentation threshold is lower than or equal to the highest feature detection threshold (e.g.  threshold = 5), features with threshold values lower than 5 still get a segmented area associated with them (upper panels). However, features that are exactly equal to 5 and do not contain any features with lower thresholds inside will not get any segmented area associated with them (lower panels) which results in no values in the mask for this feature  and ncells=0.



Case 2: Feature position

Another reason for features that do not have a segmented area associated with them is the rare but possible case when the feature position is located outside of the threshold area:


[image: _images/feature_outside_of_threshold_area.png]



In this case, it may help to change the position_threshold (see Threshold Feature Detection Parameters) to  extreme instead of  center:


[image: _images/feature_outside_of_threshold_area_extreme.png]







          

      

      

    

  

    
      
          
            
  


Linking

Currently implemented methods for linking detected features into cloud tracks:

Trackpy:

This method uses the trackpy library (http://soft-matter.github.io/trackpy).
This approach only takes the point-like position of the feature, e.g. determined as the weighted mean, into account and does not use any other information about the identified features into account. The linking makes use of the information from the linked features in the previous timesteps to predict the position and then searches for matching features in a search range determined by the v_max parameter.


[image: _images/linking_prediction.png]






          

      

      

    

  

    
      
          
            
  


Tracking Output

Tracking outputs a pandas dataframe with variables in addition to the variables output by Feature Detection (see Feature Detection Output). While this is a separate dataframe than the one output by Feature Detection, it is identical except for the addition of the columns listed below. The additional variables added by tracking, with column names listed in the Variable Name column, are described below with units.

Variables that are common to all tracking files:


tobac Tracking Output Variables







	Variable Name

	Description

	Units

	Type





	cell

	Tracked cell number; generally starts from 1. Untracked cell value can be set; but by default is -1.

	n/a

	int



	time_cell

	Time since cell was first detected.

	minutes

	object/python timedelta









          

      

      

    

  

    
      
          
            
  


Merge and Split

This submodule is a post processing step to address tracked cells which merge/split.
The first iteration of this module is to combine the cells which are merging but have received a new cell id (and are considered a new cell) once merged.
This module uses a minimum euclidian spanning tree to combine merging cells, thus the postfix for the function is MEST.
This submodule will label merged/split cells with a TRACK number in addition to its CELL number.

Features, cells, and tracks are combined using parent/child nomenclature.
(quick note on terms; “feature” is a detected object at a single time step (see Feature Detection Basics). “cell” is a series of features linked together over multiple timesteps (see Linking). “track” may be an individual cell or series of cells which have merged and/or split.)

Overview of the output dataframe from merge_split

d : xarray.core.dataset.Dataset

xarray dataset of tobac merge/split cells with parent and child designations.

Parent/child variables include:


	cell_parent_track_id: The associated track id for each cell. All cells that have merged or split will have the same parent track id. If a cell never merges/splits, only one cell will have a particular track id.


	feature_parent_cell_id: The associated parent cell id for each feature. All feature in a given cell will have the same cell id.


	feature_parent_track_id: The associated parent track id for each feature. This is not the same as the cell id number.


	track_child_cell_count: The total number of features belonging to all child cells of a given track id.


	cell_child_feature_count: The total number of features for each cell.




Example usage:

d = merge_split_MEST(Track)

merge_split outputs an xarray dataset with several variables. The variables, (with column names listed in the Variable Name column), are described below with units. Coordinates and dataset dimensions are Feature, Cell, and Track.

Variables that are common to all feature detection files:


tobac Merge_Split Track Output Variables







	Variable Name

	Description

	Units

	Type





	feature

	Unique number of the feature; starts from 1 and increments by 1 to the number of features identified in all frames

	n/a

	int64



	cell

	Tracked cell number; generally starts from 1. Untracked cell value is -1.

	n/a

	int64



	track

	Unique number of the track; starts from 0 and increments by 1 to the number of tracks identified. Untracked cells and features have a track id of -1.

	n/a

	int64



	cell_parent_track_id

	The associated track id for each cell. All cells that have merged or split will have the same parent track id. If a cell never merges/splits, only one cell will have a particular track id.

	n/a

	int64



	feature_parent_cell_id

	The associated parent cell id for each feature. All feature in a given cell will have the same cell id.

	n/a

	int64



	feature_parent_track_id

	The associated parent track id for each feature. This is not the same as the cell id number.

	n/a

	int64



	track_child_cell_count

	The number of features belonging to all child cells of a given track id.

	n/a

	int64



	cell_child_feature_count

	The number of features for each cell.

	n/a

	int64









          

      

      

    

  

    
      
          
            
  


tobac package


Submodules



tobac.analysis module

Provide tools to analyse and visualize the tracked objects.
This module provides a set of routines that enables performing analyses
and deriving statistics for individual tracks, such as the time series
of integrated properties and vertical profiles. It also provides
routines to calculate summary statistics of the entire population of
tracked features in the field like histograms of areas/volumes
or mass and a detailed cell lifetime analysis. These analysis
routines are all built in a modular manner. Thus, users can reuse the
most basic methods for interacting with the data structure of the
package in their own analysis procedures in Python. This includes
functions performing simple tasks like looping over all identified
objects or trajectories and masking arrays for the analysis of
individual features. Plotting routines include both visualizations
for individual convective cells and their properties. [1]_

References

Notes


	
tobac.analysis.area_histogram(features, mask, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, method_area=None, return_values=False, representative_area=False)

	Create an area histogram of the features. If the DataFrame
does not contain an area column, the areas are calculated.


	Parameters

	
	features (pandas.DataFrame) – DataFrame of the features.


	mask (iris.cube.Cube) – Cube containing mask (int for tracked volumes 0
everywhere else). Needs to contain either
projection_x_coordinate and projection_y_coordinate or
latitude and longitude coordinates. The output of a
segmentation should be used here.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is a ndarray,
it defines a monotonically increasing array of bin edges,
including the rightmost edge.
Default is np.arange(0, 30000, 500).


	density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the
probability density function at the bin, normalized such
that the integral over the range is 1. Default is False.


	return_values (bool, optional) – Bool determining wether the areas of the features are
returned from this function. Default is False.


	representive_area (bool, optional) – If False, no weights will associated to the values.
If True, the weights for each area will be the areas
itself, i.e. each bin count will have the value of
the sum of all areas within the edges of the bin.
Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram.


	bin_edges (ndarray) – The edges of the histogram.


	bin_centers (ndarray) – The centers of the histogram intervalls.


	areas (ndarray, optional) – A numpy array approximating the area of each feature.















	
tobac.analysis.calculate_area(features, mask, method_area=None)

	Calculate the area of the segments for each feature.


	Parameters

	
	features (pandas.DataFrame) – DataFrame of the features whose area is to be calculated.


	mask (iris.cube.Cube) – Cube containing mask (int for tracked volumes 0 everywhere
else). Needs to contain either projection_x_coordinate and
projection_y_coordinate or latitude and longitude
coordinates.


	method_area ({None, 'xy', 'latlon'}, optional) – Flag determining how the area is calculated. ‘xy’ uses the
areas of the individual pixels, ‘latlon’ uses the
area_weights method of iris.analysis.cartography, None
checks wether the required coordinates are present and
starts with ‘xy’. Default is None.






	Returns

	features – DataFrame of the features with a new column ‘area’,
containing the calculated areas.



	Return type

	pandas.DataFrame



	Raises

	ValueError – If neither latitude/longitude nor
projection_x_coordinate/projection_y_coordinate are
present in mask_coords.

If latitude/longitude coordinates are 2D.

If latitude/longitude shapes are not supported.

If method is undefined, i.e. method is neither None,
‘xy’ nor ‘latlon’.










	
tobac.analysis.calculate_areas_2Dlatlon(_2Dlat_coord, _2Dlon_coord)

	Calculate an array of cell areas when given two 2D arrays
of latitude and longitude values

NOTE: This currently assuems that the lat/lon grid is orthogonal,
which is not strictly true! It’s close enough for most cases, but
should be updated in future to use the cross product of the
distances to the neighbouring cells. This will require the use
of a more advanced calculation. I would advise using pyproj
at some point in the future to solve this issue and replace
haversine distance.


	Parameters

	
	_2Dlat_coord (AuxCoord) – Iris auxilliary coordinate containing a 2d grid of latitudes
for each point.


	_2Dlon_coord (AuxCoord) – Iris auxilliary coordinate containing a 2d grid of longitudes
for each point.






	Returns

	area – A numpy array approximating the area of each cell.



	Return type

	ndarray










	
tobac.analysis.calculate_distance(feature_1, feature_2, method_distance=None)

	Compute the distance between two features. It is based on
either lat/lon coordinates or x/y coordinates.


	Parameters

	
	feature_2 (feature_1,) – Dataframes containing multiple features or pandas.Series
of one feature. Need to contain either projection_x_coordinate
and projection_y_coordinate or latitude and longitude
coordinates.


	method_distance ({None, 'xy', 'latlon'}, optional) – Method of distance calculation. ‘xy’ uses the length of the
vector between the two features, ‘latlon’ uses the haversine
distance. None checks wether the required coordinates are
present and starts with ‘xy’. Default is None.






	Returns

	distance – Float with the distance between the two features in meters if
the input are two pandas.Series containing one feature,
pandas.Series of the distances if one of the inputs contains
multiple features.



	Return type

	float or pandas.Series










	
tobac.analysis.calculate_nearestneighbordistance(features, method_distance=None)

	Calculate the distance between a feature and the nearest other
feature in the same timeframe.


	Parameters

	
	features (pandas.DataFrame) – DataFrame of the features whose nearest neighbor distance is to
be calculated. Needs to contain either projection_x_coordinate
and projection_y_coordinate or latitude and longitude coordinates.


	method_distance ({None, 'xy', 'latlon'}, optional) – Method of distance calculation. ‘xy’ uses the length of the vector
between the two features, ‘latlon’ uses the haversine distance.
None checks wether the required coordinates are present and starts
with ‘xy’. Default is None.






	Returns

	features – DataFrame of the features with a new column ‘min_distance’,
containing the calculated minimal distance to other features.



	Return type

	pandas.DataFrame










	
tobac.analysis.calculate_overlap(track_1, track_2, min_sum_inv_distance=None, min_mean_inv_distance=None)

	Count the number of time frames in which the
individual cells of two tracks are present together
and calculate their mean and summed inverse distance.


	Parameters

	
	track_2 (track_1,) – The tracks conaining the cells to analyze.


	min_sum_inv_distance (float, optional) – Minimum of the inverse net distance for two
cells to be counted as overlapping.
Default is None.


	min_mean_inv_distance (float, optional) – Minimum of the inverse mean distance for two cells
to be counted as overlapping. Default is None.






	Returns

	overlap – DataFrame containing the columns cell_1 and cell_2
with the index of the cells from the tracks,
n_overlap with the number of frames both cells are
present in, mean_inv_distance with the mean inverse
distance and sum_inv_distance with the summed
inverse distance of the cells.



	Return type

	pandas.DataFrame










	
tobac.analysis.calculate_velocity(track, method_distance=None)

	Calculate the velocities of a set of linked features.


	Parameters

	
	track (pandas.DataFrame) – 
	Dataframe of linked features, containing the columns ‘cell’,

	’time’ and either ‘projection_x_coordinate’ and
‘projection_y_coordinate’ or ‘latitude’ and ‘longitude’.








	method_distance ({None, 'xy', 'latlon'}, optional) – Method of distance calculation, used to calculate the
velocity. ‘xy’ uses the length of the vector between the
two features, ‘latlon’ uses the haversine distance. None
checks wether the required coordinates are present and
starts with ‘xy’. Default is None.






	Returns

	track – DataFrame from the input, with an additional column ‘v’,
contain the value of the velocity for every feature at
every possible timestep



	Return type

	pandas.DataFrame










	
tobac.analysis.calculate_velocity_individual(feature_old, feature_new, method_distance=None)

	Calculate the mean velocity of a feature between two timeframes.


	Parameters

	
	feature_old (pandas.Series) – pandas.Series of a feature at a certain timeframe. Needs to
contain a ‘time’ column and either projection_x_coordinate
and projection_y_coordinate or latitude and longitude coordinates.


	feature_new (pandas.Series) – pandas.Series of the same feature at a later timeframe. Needs
to contain a ‘time’ column and either projection_x_coordinate
and projection_y_coordinate or latitude and longitude coordinates.


	method_distance ({None, 'xy', 'latlon'}, optional) – Method of distance calculation, used to calculate the velocity.
‘xy’ uses the length of the vector between the two features,
‘latlon’ uses the haversine distance. None checks wether the
required coordinates are present and starts with ‘xy’.
Default is None.






	Returns

	velocity – Value of the approximate velocity.



	Return type

	float










	
tobac.analysis.cell_statistics(input_cubes, track, mask, aggregators, cell, output_path='./', output_name='Profiles', width=10000, z_coord='model_level_number', dimensions=['x', 'y'], **kwargs)

	
	Parameters

	
	input_cubes (iris.cube.Cube) – 


	track (dask.dataframe.DataFrame) – 


	mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 everywhere
else).


	list (aggregators) – list of iris.analysis.Aggregator instances


	cell (int) – Integer id of cell to create masked cube for output.


	output_path (str, optional) – Default is ‘./’.


	output_name (str, optional) – Default is ‘Profiles’.


	width (int, optional) – Default is 10000.


	z_coord (str, optional) – Name of the vertical coordinate in the cube. Default is
‘model_level_number’.


	dimensions (list of str, optional) – Default is [‘x’, ‘y’].


	**kwargs – 






	Returns

	



	Return type

	None










	
tobac.analysis.cell_statistics_all(input_cubes, track, mask, aggregators, output_path='./', cell_selection=None, output_name='Profiles', width=10000, z_coord='model_level_number', dimensions=['x', 'y'], **kwargs)

	
	Parameters

	
	input_cubes (iris.cube.Cube) – 


	track (dask.dataframe.DataFrame) – 


	mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 everywhere
else).


	aggregators (list) – list of iris.analysis.Aggregator instances


	output_path (str, optional) – Default is ‘./’.


	cell_selection (optional) – Default is None.


	output_name (str, optional) – Default is ‘Profiles’.


	width (int, optional) – Default is 10000.


	z_coord (str, optional) – Name of the vertical coordinate in the cube. Default is
‘model_level_number’.


	dimensions (list of str, optional) – Default is [‘x’, ‘y’].


	**kwargs – 






	Returns

	



	Return type

	None










	
tobac.analysis.cog_cell(cell, Tracks=None, M_total=None, M_liquid=None, M_frozen=None, Mask=None, savedir=None)

	
	Parameters

	
	cell (int) – Integer id of cell to create masked cube for output.


	Tracks (optional) – Default is None.


	M_total (subset of cube, optional) – Default is None.


	M_liquid (subset of cube, optional) – Default is None.


	M_frozen (subset of cube, optional) – Default is None.


	savedir (str) – Default is None.






	Returns

	



	Return type

	None










	
tobac.analysis.haversine(lat1, lon1, lat2, lon2)

	Computes the Haversine distance in kilometers.

Calculates the Haversine distance between two points
(based on implementation CIS https://github.com/cedadev/cis).


	Parameters

	
	lon1 (lat1,) – First point or points as array in degrees.


	lon2 (lat2,) – Second point or points as array in degrees.






	Returns

	arclen * RADIUS_EARTH – Array of Distance(s) between the two points(-arrays) in
kilometers.



	Return type

	array










	
tobac.analysis.histogram_cellwise(Track, variable=None, bin_edges=None, quantity='max', density=False)

	Create a histogram of the maximum, minimum or mean of
a variable for the cells (series of features linked together
over multiple timesteps) of a track. Essentially a wrapper
of the numpy.histogram() method.


	Parameters

	
	Track (pandas.DataFrame) – The track containing the variable to create the histogram
from.


	variable (string, optional) – Column of the DataFrame with the variable on which the
histogram is to be based on. Default is None.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is a ndarray,
it defines a monotonically increasing array of bin edges,
including the rightmost edge.


	quantity ({'max', 'min', 'mean'}, optional) – Flag determining wether to use maximum, minimum or mean
of a variable from all timeframes the cell covers.
Default is ‘max’.


	density (bool, optional) – If False, the result will contain the number of samples
in each bin. If True, the result is the value of the
probability density function at the bin, normalized such
that the integral over the range is 1.
Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram


	bin_edges (ndarray) – The edges of the histogram


	bin_centers (ndarray) – The centers of the histogram intervalls








	Raises

	ValueError – If quantity is not ‘max’, ‘min’ or ‘mean’.










	
tobac.analysis.histogram_featurewise(Track, variable=None, bin_edges=None, density=False)

	Create a histogram of a variable from the features
(detected objects at a single time step) of a track.
Essentially a wrapper of the numpy.histogram() method.


	Parameters

	
	Track (pandas.DataFrame) – The track containing the variable to create the
histogram from.


	variable (string, optional) – Column of the DataFrame with the variable on which the
histogram is to be based on. Default is None.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is
a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.


	density (bool, optional) – If False, the result will contain the number of
samples in each bin. If True, the result is the
value of the probability density function at the
bin, normalized such that the integral over the
range is 1. Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram


	bin_edges (ndarray) – The edges of the histogram


	bin_centers (ndarray) – The centers of the histogram intervalls















	
tobac.analysis.lifetime_histogram(Track, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, return_values=False)

	Compute the lifetime histogram of linked features.


	Parameters

	
	Track (pandas.DataFrame) – Dataframe of linked features, containing the columns ‘cell’
and ‘time_cell’.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of equal-width
bins in the given range. If bins is a ndarray, it defines a
monotonically increasing array of bin edges, including the
rightmost edge. The unit is minutes.
Default is np.arange(0, 200, 20).


	density (bool, optional) – If False, the result will contain the number of samples in
each bin. If True, the result is the value of the probability
density function at the bin, normalized such that the integral
over the range is 1. Default is False.


	return_values (bool, optional) – Bool determining wether the lifetimes of the features are
returned from this function. Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram.


	bin_edges (ndarray) – The edges of the histogram.


	bin_centers (ndarray) – The centers of the histogram intervalls.


	minutes, optional (ndarray) – Numpy.array of the lifetime of each feature in minutes.
Returned if return_values is True.















	
tobac.analysis.nearestneighbordistance_histogram(features, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, method_distance=None, return_values=False)

	Create an nearest neighbor distance histogram of the features.
If the DataFrame does not contain a ‘min_distance’ column, the
distances are calculated.

features


	bin_edgesint or ndarray, optional

	If bin_edges is an int, it defines the number of equal-width
bins in the given range. If bins is a ndarray, it defines a
monotonically increasing array of bin edges, including the
rightmost edge. Default is np.arange(0, 30000, 500).



	densitybool, optional

	If False, the result will contain the number of samples in
each bin. If True, the result is the value of the probability
density function at the bin, normalized such that the integral
over the range is 1. Default is False.



	method_distance{None, ‘xy’, ‘latlon’}, optional

	Method of distance calculation. ‘xy’ uses the length of the
vector between the two features, ‘latlon’ uses the haversine
distance. None checks wether the required coordinates are
present and starts with ‘xy’. Default is None.



	return_valuesbool, optional

	Bool determining wether the nearest neighbor distance of the
features are returned from this function. Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram.


	bin_edges (ndarray) – The edges of the histogram.


	distances, optional (ndarray) – A numpy array with the nearest neighbor distances of each
feature.















	
tobac.analysis.velocity_histogram(track, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, method_distance=None, return_values=False)

	Create an velocity histogram of the features. If the DataFrame
does not contain a velocity column, the velocities are calculated.


	Parameters

	
	track (pandas.DataFrame) – 
	DataFrame of the linked features, containing the columns ‘cell’,

	’time’ and either ‘projection_x_coordinate’ and
‘projection_y_coordinate’ or ‘latitude’ and ‘longitude’.








	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of equal-width
bins in the given range. If bins is a ndarray, it defines a
monotonically increasing array of bin edges, including the
rightmost edge. Default is np.arange(0, 30000, 500).


	density (bool, optional) – If False, the result will contain the number of samples in
each bin. If True, the result is the value of the probability
density function at the bin, normalized such that the integral
over the range is 1. Default is False.


	methods_distance ({None, 'xy', 'latlon'}, optional) – Method of distance calculation, used to calculate the velocity.
‘xy’ uses the length of the vector between the two features,
‘latlon’ uses the haversine distance. None checks wether the
required coordinates are present and starts with ‘xy’.
Default is None.


	return_values (bool, optional) – Bool determining wether the velocities of the features are
returned from this function. Default is False.






	Returns

	
	hist (ndarray) – The values of the histogram.


	bin_edges (ndarray) – The edges of the histogram.


	velocities , optional (ndarray) – Numpy array with the velocities of each feature.
















tobac.centerofgravity module

Identify center of gravity and mass for analysis.


	
tobac.centerofgravity.calculate_cog(tracks, mass, mask)

	Calculate center of gravity and mass for each tracked cell.


	Parameters

	
	tracks (pandas.DataFrame) – DataFrame containing trajectories of cell centers.


	mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’,
‘geopotential_height’,’projection_x_coordinate’ and
‘projection_y_coordinate’).


	mask (iris.cube.Cube) – Cube containing mask (int > where belonging to area/volume
of feature, 0 else).






	Returns

	tracks_out – Dataframe containing t, x, y, z positions of center of gravity
and total mass of each tracked cell at each timestep.



	Return type

	pandas.DataFrame










	
tobac.centerofgravity.calculate_cog_domain(mass)

	Calculate center of gravity and mass for entire domain.


	Parameters

	mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’,
‘geopotential_height’,’projection_x_coordinate’ and
‘projection_y_coordinate’).



	Returns

	tracks_out – Dataframe containing t, x, y, z positions of center of gravity
and total mass of the entire domain.



	Return type

	pandas.DataFrame










	
tobac.centerofgravity.calculate_cog_untracked(mass, mask)

	Calculate center of gravity and mass for untracked domain parts.


	Parameters

	
	mass (iris.cube.Cube) – Cube of quantity (need coordinates ‘time’,
‘geopotential_height’,’projection_x_coordinate’ and
‘projection_y_coordinate’).


	mask (iris.cube.Cube) – Cube containing mask (int > where belonging to area/volume
of feature, 0 else).






	Returns

	tracks_out – Dataframe containing t, x, y, z positions of center of gravity
and total mass for untracked part of the domain.



	Return type

	pandas.DataFrame










	
tobac.centerofgravity.center_of_gravity(cube_in)

	Calculate center of gravity and sum of quantity.


	Parameters

	cube_in (iris.cube.Cube) – Cube (potentially masked) of quantity (need coordinates
‘geopotential_height’,’projection_x_coordinate’ and
‘projection_y_coordinate’).



	Returns

	
	x (float) – X position of center of gravity.


	y (float) – Y position of center of gravity.


	z (float) – Z position of center of gravity.


	variable_sum (float) – Sum of quantity of over unmasked part of the cube.
















tobac.feature_detection module

Provide feature detection.

This module can work with any two-dimensional field.
To identify the features, contiguous regions above or
below a threshold are determined and labelled individually.
To describe the specific location of the feature at a
specific point in time, different spatial properties
are used to describe the identified region. [2]_

References


	
tobac.feature_detection.feature_detection_multithreshold(field_in, dxy, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, feature_number_start=1, wavelength_filtering=None)

	Perform feature detection based on contiguous regions.

The regions are above/below a threshold.


	Parameters

	
	field_in (iris.cube.Cube) – 2D field to perform the tracking on (needs to have coordinate
‘time’ along one of its dimensions),


	dxy (float) – Grid spacing of the input data (in meter).


	thresholds (list of floats, optional) – Threshold values used to select target regions to track.
Default is None.


	target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking is targetting minima or maxima in
the data. Default is ‘maximum’.


	position_threshold ({'center', 'extreme', 'weighted_diff',) – ‘weighted_abs’}, optional
Flag choosing method used for the position of the tracked
feature. Default is ‘center’.


	coord_interp_kind (str, optional) – The kind of interpolation for coordinates. Default is ‘linear’.
For 1d interp, {‘linear’, ‘nearest’, ‘nearest-up’, ‘zero’,


’slinear’, ‘quadratic’, ‘cubic’,
‘previous’, ‘next’}.




For 2d interp, {‘linear’, ‘cubic’, ‘quintic’}.




	sigma_threshold (float, optional) – Standard deviation for intial filtering step. Default is 0.5.


	n_erosion_threshold (int, optional) – Number of pixel by which to erode the identified features.
Default is 0.


	n_min_threshold (int, optional) – Minimum number of identified features. Default is 0.


	min_distance (float, optional) – Minimum distance between detected features (in meter). Default is 0.


	feature_number_start (int, optional) – Feature id to start with. Default is 1.


	wavelength_filtering (tuple, optional) – Minimum and maximum wavelength for spectral filtering in meter. Default is None.






	Returns

	features – Detected features. The structure of this dataframe is explained
here [https://tobac.readthedocs.io/en/latest/data_input.html]



	Return type

	pandas.DataFrame










	
tobac.feature_detection.feature_detection_multithreshold_timestep(data_i, i_time, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, feature_number_start=1, dxy=-1, wavelength_filtering=None)

	Find features in each timestep.

Based on iteratively finding regions above/below a set of
thresholds. Smoothing the input data with the Gaussian filter makes
output less sensitive to noisiness of input data.


	Parameters

	
	data_i (iris.cube.Cube) – 2D field to perform the feature detection (single timestep) on.


	threshold (float, optional) – Threshold value used to select target regions to track. Default
is None.


	min_num (int, optional) – This parameter is not used in the function. Default is 0.


	target ({'maximum', 'minimum'}, optinal) – Flag to determine if tracking is targetting minima or maxima
in the data. Default is ‘maximum’.


	position_threshold ({'center', 'extreme', 'weighted_diff',) – ‘weighted_abs’}, optional
Flag choosing method used for the position of the tracked
feature. Default is ‘center’.


	sigma_threshold (float, optional) – Standard deviation for intial filtering step. Default is 0.5.


	n_erosion_threshold (int, optional) – Number of pixel by which to erode the identified features.
Default is 0.


	n_min_threshold (int, optional) – Minimum number of identified features. Default is 0.


	min_distance (float, optional) – Minimum distance between detected features (in meter). Default is 0.


	feature_number_start (int, optional) – Feature id to start with. Default is 1.


	dxy (float) – Grid spacing in meter.


	wavelength_filtering (tuple, optional) – Minimum and maximum wavelength for spectral filtering in meter. Default is None.






	Returns

	features_threshold – Detected features for individual timestep.



	Return type

	pandas DataFrame










	
tobac.feature_detection.feature_detection_threshold(data_i, i_time, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, idx_start=0)

	Find features based on individual threshold value.


	Parameters

	
	data_i (iris.cube.Cube) – 2D field to perform the feature detection (single timestep) on.


	i_time (int) – Number of the current timestep.


	threshold (float, optional) – 
	Threshold value used to select target regions to track. Default

	is None.








	target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking is targetting minima or maxima
in the data. Default is ‘maximum’.


	position_threshold ({'center', 'extreme', 'weighted_diff',) – ‘weighted_abs’}, optional
Flag choosing method used for the position of the tracked
feature. Default is ‘center’.


	sigma_threshold (float, optional) – Standard deviation for intial filtering step. Default is 0.5.


	n_erosion_threshold (int, optional) – Number of pixel by which to erode the identified features.
Default is 0.


	n_min_threshold (int, optional) – Minimum number of identified features. Default is 0.


	min_distance (float, optional) – Minimum distance between detected features (in meter). Default is 0.


	idx_start (int, optional) – Feature id to start with. Default is 0.






	Returns

	
	features_threshold (pandas DataFrame) – Detected features for individual threshold.


	regions (dict) – Dictionary containing the regions above/below threshold used
for each feature (feature ids as keys).















	
tobac.feature_detection.feature_position(hdim1_indices, hdim2_indices, region_small=None, region_bbox=None, track_data=None, threshold_i=None, position_threshold='center', target=None)

	Determine feature position with regard to the horizontal
dimensions in pixels from the identified region above
threshold values


	Parameters

	
	hdim1_indices (list) – indices of pixels in region along first horizontal
dimension


	hdim2_indices (list) – indices of pixels in region along second horizontal
dimension


	region_small (2D array-like) – A true/false array containing True where the threshold
is met and false where the threshold isn’t met. This
array should be the the size specified by region_bbox,
and can be a subset of the overall input array
(i.e., `track_data`).


	region_bbox (list or tuple with length of 4) – The coordinates that region_small occupies within the
total track_data array. This is in the order that the
coordinates come from the `get_label_props_in_dict`
function. For 2D data, this should be: (hdim1 start,
hdim 2 start, hdim 1 end, hdim 2 end).


	track_data (2D array-like) – 2D array containing the data


	threshold_i (float) – The threshold value that we are testing against


	position_threshold ({'center', 'extreme', 'weighted_diff', ') – weighted abs’}
How to select the single point position from our data.
‘center’ picks the geometrical centre of the region,
and is typically not recommended. ‘extreme’ picks the
maximum or minimum value inside the region (max/min set by


`target`) ‘weighted_diff’ picks the centre of the
region weighted by the distance from the threshold value




’weighted_abs’ picks the centre of the region weighted by
the absolute values of the field




	target ({'maximum', 'minimum'}) – Used only when position_threshold is set to ‘extreme’,
this sets whether it is looking for maxima or minima.






	Returns

	
	float – feature position along 1st horizontal dimension


	float – feature position along 2nd horizontal dimension















	
tobac.feature_detection.filter_min_distance(features, dxy, min_distance, target='maximum')

	Perform feature detection based on contiguous regions.

Regions are above/below a threshold.


	Parameters

	
	features (pandas.DataFrame) – 


	dxy (float) – Grid spacing (in meter) of the input data.


	min_distance (float, optional) – Minimum distance (in meter) between detected features.


	target (str {maximum | minimum}, optional) – Whether the threshod target is a maxima or minima (defaults to
maximum)






	Returns

	features – Detected features.



	Return type

	pandas.DataFrame










	
tobac.feature_detection.remove_parents(features_thresholds, regions_i, regions_old)

	Remove parents of newly detected feature regions.

Remove features where its regions surround newly
detected feature regions.


	Parameters

	
	features_thresholds (pandas.DataFrame) – Dataframe containing detected features.


	regions_i (dict) – Dictionary containing the regions above/below
threshold for the newly detected feature
(feature ids as keys).


	regions_old (dict) – Dictionary containing the regions above/below
threshold from previous threshold
(feature ids as keys).






	Returns

	features_thresholds – Dataframe containing detected features excluding those
that are superseded by newly detected ones.



	Return type

	pandas.DataFrame










	
tobac.feature_detection.test_overlap(region_inner, region_outer)

	Test for overlap between two regions


	Parameters

	
	region_1 (list) – list of 2-element tuples defining the indices of
all cell in the region


	region_2 (list) – list of 2-element tuples defining the indices of
all cell in the region






	Returns

	overlap – True if there are any shared points between the two
regions



	Return type

	bool











tobac.merge_split module

Tobac merge and split
This submodule is a post processing step to address tracked cells which merge/split.
The first iteration of this module is to combine the cells which are merging but have received
a new cell id (and are considered a new cell) once merged. In general this submodule will label merged/split cells
with a TRACK number in addition to its CELL number.


	
tobac.merge_split.merge_split_MEST(TRACK, dxy, distance=None, frame_len=5)

	function to  postprocess tobac track data for merge/split cells using a minimum euclidian spanning tree


	Parameters

	
	TRACK (pandas.core.frame.DataFrame) – Pandas dataframe of tobac Track information


	dxy (float, mandatory) – The x/y grid spacing of the data.
Should be in meters.









	distancefloat, optional

	Distance threshold determining how close two features must be in order to consider merge/splitting.
Default is 25x the x/y grid spacing of the data, given in dxy.
The distance should be in units of meters.



	frame_lenfloat, optional

	Threshold for the maximum number of frames that can separate the end of cell and the start of a related cell.
Default is five (5) frames.






	Returns

	d –

xarray dataset of tobac merge/split cells with parent and child designations.


Parent/child variables include:





	cell_parent_track_id: The associated track id for each cell. All cells that have merged or split will have the same parent track id. If a cell never merges/splits, only one cell will have a particular track id.


	feature_parent_cell_id: The associated parent cell id for each feature. All features in a given cell will have the same cell id. This is the original TRACK cell_id.


	feature_parent_track_id: The associated parent track id for each feature. This is not the same as the cell id number.


	track_child_cell_count: The total number of features belonging to all child cells of a given track id.


	cell_child_feature_count: The total number of features for each cell.








	Return type

	xarray.core.dataset.Dataset






	Example usage:

	d = merge_split_MEST(Track)
ds = tobac.utils.standardize_track_dataset(Track, refl_mask)
both_ds = xr.merge([ds, d],compat =’override’)
both_ds = tobac.utils.compress_all(both_ds)
both_ds.to_netcdf(os.path.join(savedir,’Track_features_merges.nc’))











tobac.plotting module

Provide methods for plotting analyzed data.

Plotting routines including both visualizations for
the entire dataset including all tracks, and detailed
visualizations for individual cells and their properties.

References


	
tobac.plotting.animation_mask_field(track, features, field, mask, interval=500, figsize=(10, 10), **kwargs)

	Create animation of field, features and segments of
all timeframes.


	Parameters

	
	track (pandas.DataFrame) – Output of linking_trackpy.


	features (pandas.DataFrame) – Output of the feature detection.


	field (iris.cube.Cube) – Original input data.


	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0
everywhere else), output of the segmentation step.


	interval (int, optional) – Delay between frames in milliseconds.
Default is 500.


	figsize (tupel of float, optional) – Width, height of the plot in inches.
Default is (10, 10).


	**kwargs – 






	Returns

	animation – Created animation as object.



	Return type

	matplotlib.animation.FuncAnimation










	
tobac.plotting.make_map(axes)

	Configure the parameters of cartopy for plotting.


	Parameters

	axes (cartopy.mpl.geoaxes.GeoAxesSubplot) – GeoAxesSubplot to configure.



	Returns

	axes – Cartopy axes to configure



	Return type

	cartopy.mpl.geoaxes.GeoAxesSubplot










	
tobac.plotting.map_tracks(track, axis_extent=None, figsize=None, axes=None, untracked_cell_value=-1)

	Plot the trajectories of the cells on a map.


	Parameters

	
	track (pandas.DataFrame) – Dataframe containing the linked features with a
column ‘cell’.


	axis_extent (matplotlib.axes, optional) – Array containing the bounds of the longitude
and latitude values. The structure is
[long_min, long_max, lat_min, lat_max].
Default is None.


	figsize (tuple of floats, optional) – Width, height of the plot in inches.
Default is (10, 10).


	axes (cartopy.mpl.geoaxes.GeoAxesSubplot, optional) – GeoAxesSubplot to use for plotting. Default is None.


	untracked_cell_value (int or np.nan, optional) – Value of untracked cells in track[‘cell’].
Default is -1.






	Returns

	axes – Axes with the plotted trajectories.



	Return type

	cartopy.mpl.geoaxes.GeoAxesSubplot



	Raises

	ValueError – If no axes is passed.










	
tobac.plotting.plot_histogram_cellwise(track, bin_edges, variable, quantity, axes=None, density=False, **kwargs)

	Plot the histogram of a variable based on the cells.


	Parameters

	
	track (pandas.DataFrame) – DataFrame of the features containing the variable
as column and a column ‘cell’.


	bin_edges (int or ndarray) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is
a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.


	variable (string) – Column of the DataFrame with the variable on which the
histogram is to be based on. Default is None.


	quantity ({'max', 'min', 'mean'}, optional) – Flag determining wether to use maximum, minimum or mean
of a variable from all timeframes the cell covers.
Default is ‘max’.


	axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default is None.


	density (bool, optional) – If False, the result will contain the number of
samples in each bin. If True, the result is the
value of the probability density function at the
bin, normalized such that the integral over the
range is 1. Default is False.


	**kwargs – 






	Returns

	plot_hist – List containing the matplotlib.lines.Line2D instance
of the histogram



	Return type

	list










	
tobac.plotting.plot_histogram_featurewise(Track, bin_edges, variable, axes=None, density=False, **kwargs)

	Plot the histogram of a variable based on the features.


	Parameters

	
	Track (pandas.DataFrame) – DataFrame of the features containing the variable
as column.


	bin_edges (int or ndarray) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is
a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.


	variable (str) – Column of the DataFrame with the variable on which the
histogram is to be based on.


	axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default is None.


	density (bool, optional) – If False, the result will contain the number of
samples in each bin. If True, the result is the
value of the probability density function at the
bin, normalized such that the integral over the
range is 1. Default is False.


	**kwargs – 






	Returns

	plot_hist – List containing the matplotlib.lines.Line2D instance
of the histogram



	Return type

	list










	
tobac.plotting.plot_lifetime_histogram(track, axes=None, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, **kwargs)

	Plot the liftetime histogram of the cells.


	Parameters

	
	track (pandas.DataFrame) – DataFrame of the features containing the columns
‘cell’ and ‘time_cell’.


	axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default is None.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is
a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.
Default is np.arange(0, 200, 20).


	density (bool, optional) – If False, the result will contain the number of
samples in each bin. If True, the result is the
value of the probability density function at the
bin, normalized such that the integral over the
range is 1. Default is False.


	**kwargs – 






	Returns

	plot_hist – List containing the matplotlib.lines.Line2D instance
of the histogram



	Return type

	list










	
tobac.plotting.plot_lifetime_histogram_bar(track, axes=None, bin_edges=<sphinx.ext.autodoc.importer._MockObject object>, density=False, width_bar=1, shift=0.5, **kwargs)

	Plot the liftetime histogram of the cells as bar plot.


	Parameters

	
	track (pandas.DataFrame) – DataFrame of the features containing the columns
‘cell’ and ‘time_cell’.


	axes (matplotlib.axes.Axes, optional) – Matplotlib axes to plot on. Default is None.


	bin_edges (int or ndarray, optional) – If bin_edges is an int, it defines the number of
equal-width bins in the given range. If bins is
a sequence, it defines a monotonically increasing
array of bin edges, including the rightmost edge.


	density (bool, optional) – If False, the result will contain the number of
samples in each bin. If True, the result is the
value of the probability density function at the
bin, normalized such that the integral over the
range is 1. Default is False.


	width_bar (float) – Width of the bars. Default is 1.


	shift (float) – Value to shift the bin centers to the right.
Default is 0.5.


	**kwargs – 






	Returns

	plot_hist – matplotlib.container.BarContainer instance
of the histogram



	Return type

	matplotlib.container.BarContainer










	
tobac.plotting.plot_mask_cell_individual_3Dstatic(cell_i, track, cog, features, mask_total, field_contour, field_filled, axes=None, xlim=None, ylim=None, label_field_contour=None, cmap_field_contour='Blues', norm_field_contour=None, linewidths_contour=0.8, contour_labels=False, vmin_field_contour=0, vmax_field_contour=50, levels_field_contour=None, nlevels_field_contour=10, label_field_filled=None, cmap_field_filled='summer', norm_field_filled=None, vmin_field_filled=0, vmax_field_filled=100, levels_field_filled=None, nlevels_field_filled=10, title=None, feature_number=False, ele=10.0, azim=210.0)

	Make plots for cell in fixed frame and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_individual_follow(cell_i, track, cog, features, mask_total, field_contour, field_filled, axes=None, width=10000, label_field_contour=None, cmap_field_contour='Blues', norm_field_contour=None, linewidths_contour=0.8, contour_labels=False, vmin_field_contour=0, vmax_field_contour=50, levels_field_contour=None, nlevels_field_contour=10, label_field_filled=None, cmap_field_filled='summer', norm_field_filled=None, vmin_field_filled=0, vmax_field_filled=100, levels_field_filled=None, nlevels_field_filled=10, title=None)

	Make individual plot for cell centred around cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_individual_static(cell_i, track, cog, features, mask_total, field_contour, field_filled, axes=None, xlim=None, ylim=None, label_field_contour=None, cmap_field_contour='Blues', norm_field_contour=None, linewidths_contour=0.8, contour_labels=False, vmin_field_contour=0, vmax_field_contour=50, levels_field_contour=None, nlevels_field_contour=10, label_field_filled=None, cmap_field_filled='summer', norm_field_filled=None, vmin_field_filled=0, vmax_field_filled=100, levels_field_filled=None, nlevels_field_filled=10, title=None, feature_number=False)

	Make plots for cell in fixed frame and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_track_2D3Dstatic(cell, track, cog, features, mask_total, field_contour, field_filled, width=10000, n_extend=1, name='test', plotdir='./', file_format=['png'], figsize=(3.937007874015748, 3.937007874015748), dpi=300, ele=10, azim=30, **kwargs)

	Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_track_3Dstatic(cell, track, cog, features, mask_total, field_contour, field_filled, width=10000, n_extend=1, name='test', plotdir='./', file_format=['png'], figsize=(3.937007874015748, 3.937007874015748), dpi=300, **kwargs)

	Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_track_follow(cell, track, cog, features, mask_total, field_contour, field_filled, width=10000, name='test', plotdir='./', file_format=['png'], figsize=(3.937007874015748, 3.937007874015748), dpi=300, **kwargs)

	Make plots for all cells centred around cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_track_static(cell, track, cog, features, mask_total, field_contour, field_filled, width=10000, n_extend=1, name='test', plotdir='./', file_format=['png'], figsize=(3.937007874015748, 3.937007874015748), dpi=300, **kwargs)

	Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_mask_cell_track_static_timeseries(cell, track, cog, features, mask_total, field_contour, field_filled, track_variable=None, variable=None, variable_ylabel=None, variable_label=[None], variable_legend=False, variable_color=None, width=10000, n_extend=1, name='test', plotdir='./', file_format=['png'], figsize=(7.874015748031496, 3.937007874015748), dpi=300, **kwargs)

	Make plots for all cells with fixed frame including entire development of the cell and with one background field as filling and one background field as contrours
Input:
Output:






	
tobac.plotting.plot_tracks_mask_field(track, field, mask, features, axes=None, axis_extent=None, plot_outline=True, plot_marker=True, marker_track='x', markersize_track=4, plot_number=True, plot_features=False, marker_feature=None, markersize_feature=None, title=None, title_str=None, vmin=None, vmax=None, n_levels=50, cmap='viridis', extend='neither', orientation_colorbar='horizontal', pad_colorbar=0.05, label_colorbar=None, fraction_colorbar=0.046, rasterized=True, linewidth_contour=1)

	Plot field, features and segments of a timeframe and
on a map projection. It is required to pass vmin, vmax,
axes and axis_extent as keyword arguments.


	Parameters

	
	track (pandas.DataFrame) – One or more timeframes of a dataframe generated by
linking_trackpy.


	field (iris.cube.Cube) – One frame/time step of the original input data.


	mask (iris.cube.Cube) – One frame/time step of the Cube containing mask (int id
for tracked volumes 0 everywhere else), output of the
segmentation step.


	features (pandas.DataFrame) – Output of the feature detection, one or more frames/time steps.


	axes (cartopy.mpl.geoaxes.GeoAxesSubplot) – GeoAxesSubplot to use for plotting. Default is None.


	axis_extent (ndarray) – Array containing the bounds of the longitude and latitude
values. The structure is
[long_min, long_max, lat_min, lat_max]. Default is None.


	plot_outline (bool, optional) – Boolean defining whether the outlines of the segments are
plotted. Default is True.


	plot_marker (bool, optional) – Boolean defining whether the positions of the features from
the track dataframe are plotted. Default is True.


	marker_track (str, optional) – String defining the shape of the marker for the feature
positions from the track dataframe. Default is ‘x’.


	markersize_track (int, optional) – Int defining the size of the marker for the feature
positions from the track dataframe. Default is 4.


	plot_number (bool, optional) – Boolean defining wether the index of the cells
is plotted next to the individual feature position.
Default is True.


	plot_features (bool, optional) – Boolean defining wether the positions of the features from
the features dataframe are plotted. Default is True.


	marker_feature (optional) – String defining the shape of the marker for the feature
positions from the features dataframe. Default is None.


	markersize_feature (optional) – Int defining the size of the marker for the feature
positions from the features dataframe. Default is None.


	title (str, optional) – Flag determining the title of the plot. ‘datestr’ uses
date and time of the field. None sets not title.
Default is None.


	title_str (str, optional) – Additional string added to the beginning of the title.
Default is None.


	vmin (float) – Lower bound of the colorbar. Default is None.


	vmax (float) – Upper bound of the colorbar. Default is None.


	n_levels (int, optional) – Number of levels of the contour plot of the field.
Default is 50.


	cmap ({'viridis',..}, optional) – Colormap of the countour plot of the field.
matplotlib.colors. Default is ‘viridis’.


	extend (str, optional) – Determines the coloring of values that are
outside the levels range. If ‘neither’, values outside
the levels range are not colored. If ‘min’, ‘max’ or
‘both’, color the values below, above or below and above
the levels range. Values below min(levels) and above
max(levels) are mapped to the under/over values of the
Colormap. Default is ‘neither’.


	orientation_colorbar (str, optional) – Orientation of the colorbar, ‘horizontal’ or ‘vertical’
Default is ‘horizontal’.


	pad_colorbar (float, optional) – Fraction of original axes between colorbar and new
image axes. Default is 0.05.


	label_colorbar (str, optional) – Label of the colorbar. If none, name and unit of
the field are used. Default is None.


	fraction_colorbar (float, optional) – Fraction of original axes to use for colorbar.
Default is 0.046.


	rasterized (bool, optional) – True enables, False disables rasterization.
Default is True.


	linewidth_contour (int, optional) – Linewidth of the contour plot of the segments.
Default is 1.






	Returns

	axes – Axes with the plot.



	Return type

	cartopy.mpl.geoaxes.GeoAxesSubplot



	Raises

	ValueError – If axes are not cartopy.mpl.geoaxes.GeoAxesSubplot.

If mask.ndim is neither 2 nor 3.










	
tobac.plotting.plot_tracks_mask_field_loop(track, field, mask, features, axes=None, name=None, plot_dir='./', figsize=(3.937007874015748, 3.937007874015748), dpi=300, margin_left=0.05, margin_right=0.05, margin_bottom=0.05, margin_top=0.05, **kwargs)

	Plot field, feature positions and segments
onto individual maps for all timeframes and
save them as pngs.


	Parameters

	
	track (pandas.DataFrame) – Output of linking_trackpy.


	field (iris.cube.Cube) – Original input data.


	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0
everywhere else). Output of the segmentation step.


	features (pandas.DataFrame) – Output of the feature detection.


	axes (cartopy.mpl.geoaxes.GeoAxesSubplot, optional) – Not used. Default is None.


	name (str, optional) – Filename without file extension. Same for all pngs. If None,
the name of the field is used. Default is None.


	plot_dir (str, optional) – Path where the plots will be saved. Default is ‘./’.


	figsize (tuple of floats, optional) – Width, height of the plot in inches.
Default is (10/2.54, 10/2.54).


	dpi (int, optional) – Plot resolution. Default is 300.


	margin_left (float, optional) – The position of the left edge of the axes, as a
fraction of the figure width. Default is 0.05.


	margin_right (float, optional) – The position of the right edge of the axes, as a
fraction of the figure width. Default is 0.05.


	margin_bottom (float, optional) – The position of the bottom edge of the axes, as a
fraction of the figure width. Default is 0.05.


	margin_top (float, optional) – The position of the top edge of the axes, as a
fraction of the figure width. Default is 0.05.


	**kwargs – 






	Returns

	



	Return type

	None











tobac.segmentation module

Provide segmentation techniques.

Segmentation techniques are used to associate areas or volumes to each
identified feature. The segmentation is implemented using watershedding
techniques from the field of image processing with a fixed threshold
value. This value has to be set specifically for every type of input
data and application. The segmentation can be performed for both
two-dimensional and three-dimensional data. At each timestep, a marker
is set at the position (weighted mean center) of each feature identified
in the detection step in an array otherwise filled with zeros. In case
of the three-dimentional watershedding, all cells in the column above
the weighted mean center position of the identified features fulfilling
the threshold condition are set to the respective marker. The algorithm
then fills the area (2D) or volume (3D) based on the input field
starting from these markers until reaching the threshold. If two or more
features are directly connected, the border runs along the
watershed line between the two regions. This procedure creates a mask
that has the same form as the input data, with the corresponding integer
number at all grid points that belong to a feature, else with zero. This
mask can be conveniently and efficiently used to select the volume of each
feature at a specific time step for further analysis or visialization.

References


	
tobac.segmentation.segmentation(features, field, dxy, threshold=0.003, target='maximum', level=None, method='watershed', max_distance=None, vertical_coord='auto')

	Use watershedding to determine region above a threshold
value around initial seeding position for all time steps of
the input data. Works both in 2D (based on single seeding
point) and 3D and returns a mask with zeros everywhere around
the identified regions and the feature id inside the regions.

Calls segmentation_timestep at each individal timestep of the
input data.


	Parameters

	
	features (pandas.DataFrame) – Output from trackpy/maketrack.


	field (iris.cube.Cube) – Containing the field to perform the watershedding on.


	dxy (float) – Grid spacing of the input data.


	threshold (float, optional) – Threshold for the watershedding field to be used for the mask.
Default is 3e-3.


	target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking is targetting minima or maxima in
the data. Default is ‘maximum’.


	level (slice of iris.cube.Cube, optional) – Levels at which to seed the cells for the watershedding
algorithm. Default is None.


	method ({'watershed'}, optional) – Flag determining the algorithm to use (currently watershedding
implemented). ‘random_walk’ could be uncommented.


	max_distance (float, optional) – Maximum distance from a marker allowed to be classified as
belonging to that cell. Default is None.


	vertical_coord ({'auto', 'z', 'model_level_number', 'altitude',) – ‘geopotential_height’}, optional
Name of the vertical coordinate for use in 3D segmentation case






	Returns

	
	segmentation_out (iris.cube.Cube) – Mask, 0 outside and integer numbers according to track
inside the area/volume of the feature.


	features_out (pandas.DataFrame) – Feature dataframe including the number of cells (2D or 3D) in
the segmented area/volume of the feature at the timestep.








	Raises

	ValueError – If field_in.ndim is neither 3 nor 4 and ‘time’ is not included
in coords.










	
tobac.segmentation.segmentation_2D(features, field, dxy, threshold=0.003, target='maximum', level=None, method='watershed', max_distance=None)

	Wrapper for the segmentation()-function.






	
tobac.segmentation.segmentation_3D(features, field, dxy, threshold=0.003, target='maximum', level=None, method='watershed', max_distance=None)

	Wrapper for the segmentation()-function.






	
tobac.segmentation.segmentation_timestep(field_in, features_in, dxy, threshold=0.003, target='maximum', level=None, method='watershed', max_distance=None, vertical_coord='auto')

	Perform watershedding for an individual time step of the data. Works
for both 2D and 3D data


	Parameters

	
	field_in (iris.cube.Cube) – Input field to perform the watershedding on (2D or 3D for one
specific point in time).


	features_in (pandas.DataFrame) – Features for one specific point in time.


	dxy (float) – Grid spacing of the input data in metres


	threshold (float, optional) – Threshold for the watershedding field to be used for the mask.
Default is 3e-3.


	target ({'maximum', 'minimum'}, optional) – Flag to determine if tracking is targetting minima or maxima in
the data to determine from which direction to approach the threshold
value. Default is ‘maximum’.


	level (slice of iris.cube.Cube, optional) – Levels at which to seed the cells for the watershedding
algorithm. Default is None.


	method ({'watershed'}, optional) – Flag determining the algorithm to use (currently watershedding
implemented). ‘random_walk’ could be uncommented.


	max_distance (float, optional) – Maximum distance from a marker allowed to be classified as
belonging to that cell. Default is None.


	vertical_coord (str, optional) – Vertical coordinate in 3D input data. If ‘auto’, input is checked for
one of {‘z’, ‘model_level_number’, ‘altitude’,’geopotential_height’}
as a likely coordinate name






	Returns

	
	segmentation_out (iris.cube.Cube) – Mask, 0 outside and integer numbers according to track
inside the ojects.


	features_out (pandas.DataFrame) – Feature dataframe including the number of cells (2D or 3D) in
the segmented area/volume of the feature at the timestep.








	Raises

	ValueError – If target is neither ‘maximum’ nor ‘minimum’.


	If vertical_coord is not in {‘auto’, ‘z’, ‘model_level_number’,

	‘altitude’, geopotential_height’}.





If there is more than one coordinate name.

If the spatial dimension is neither 2 nor 3.

If method is not ‘watershed’.










	
tobac.segmentation.watershedding_2D(track, field_in, **kwargs)

	Wrapper for the segmentation()-function.






	
tobac.segmentation.watershedding_3D(track, field_in, **kwargs)

	Wrapper for the segmentation()-function.







tobac.testing module

Containing methods to make simple sample data for testing.


	
tobac.testing.generate_single_feature(start_h1, start_h2, start_v=None, spd_h1=1, spd_h2=1, spd_v=1, min_h1=0, max_h1=1000, min_h2=0, max_h2=1000, num_frames=1, dt=datetime.timedelta(seconds=300), start_date=datetime.datetime(2022, 1, 1, 0, 0), frame_start=1, feature_num=1)

	Function to generate a dummy feature dataframe to test the tracking functionality


	Parameters

	
	start_h1 (float) – Starting point of the feature in hdim_1 space


	start_h2 (float) – Starting point of the feature in hdim_2 space


	start_v (float, optional) – Starting point of the feature in vdim space (if 3D). For 2D, set to None.
Default is None


	spd_h1 (float, optional) – Speed (per frame) of the feature in hdim_1
Default is 1


	spd_h2 (float, optional) – Speed (per frame) of the feature in hdim_2
Default is 1


	spd_v (float, optional) – Speed (per frame) of the feature in vdim
Default is 1


	min_h1 (int, optional) – Minimum value of hdim_1 allowed. If PBC_flag is not ‘none’, then
this will be used to know when to wrap around periodic boundaries.
If PBC_flag is ‘none’, features will disappear if they are above/below
these bounds.
Default is 0


	max_h1 (int, optional) – Similar to min_h1, but the max value of hdim_1 allowed.
Default is 1000


	min_h2 (int, optional) – Similar to min_h1, but the minimum value of hdim_2 allowed.
Default is 0


	max_h2 (int, optional) – Similar to min_h1, but the maximum value of hdim_2 allowed.
Default is 1000


	num_frames (int, optional) – Number of frames to generate
Default is 1


	dt (datetime.timedelta, optional) – Difference in time between each frame
Default is datetime.timedelta(minutes=5)


	start_date (datetime.datetime, optional) – Start datetime
Default is datetime.datetime(2022, 1, 1, 0)


	frame_start (int, optional) – Number to start the frame at
Default is 1


	feature_num (int, optional) – What number to start the feature at
Default is 1













	
tobac.testing.make_dataset_from_arr(in_arr, data_type='xarray', time_dim_num=None, z_dim_num=None, y_dim_num=0, x_dim_num=1)

	Makes a dataset (xarray or iris) for feature detection/segmentation from
a raw numpy/dask/etc. array.


	Parameters

	
	in_arr (array-like) – The input array to convert to iris/xarray


	data_type (str('xarray' or 'iris'), optional) – Type of the dataset to return
Default is ‘xarray’


	time_dim_num (int or None, optional) – What axis is the time dimension on, None for a single timestep
Default is None


	z_dim_num (int or None, optional) – What axis is the z dimension on, None for a 2D array
Default is None


	y_dim_num (int, optional) – What axis is the y dimension on, typically 0 for a 2D array
Default is 0


	x_dim_num (int, optional) – What axis is the x dimension on, typically 1 for a 2D array
Default is 1






	Returns

	



	Return type

	Iris or xarray dataset with everything we need for feature detection/tracking.










	
tobac.testing.make_feature_blob(in_arr, h1_loc, h2_loc, v_loc=None, h1_size=1, h2_size=1, v_size=1, shape='rectangle', amplitude=1)

	Function to make a defined “blob” in location (zloc, yloc, xloc) with
user-specified shape and amplitude. Note that this function will
round the size and locations to the nearest point within the array.


	Parameters

	
	in_arr (array-like) – input array to add the “blob” to


	h1_loc (float) – Center hdim_1 location of the blob, required


	h2_loc (float) – Center hdim_2 location of the blob, required


	v_loc (float, optional) – Center vdim location of the blob, optional. If this is None, we assume that the
dataset is 2D.
Default is None


	h1_size (float, optional) – Size of the bubble in array coordinates in hdim_1
Default is 1


	h2_size (float, optional) – Size of the bubble in array coordinates in hdim_2
Default is 1


	v_size (float, optional) – Size of the bubble in array coordinates in vdim
Default is 1


	shape (str('rectangle'), optional) – The shape of the blob that is added. For now, this is just rectangle
‘rectangle’ adds a rectangular/rectangular prism bubble with constant amplitude amplitude.
Default is “rectangle”


	amplitude (float, optional) – Maximum amplitude of the blob
Default is 1






	Returns

	An array with the same type as in_arr that has the blob added.



	Return type

	array-like










	
tobac.testing.make_sample_data_2D_3blobs(data_type='iris')

	Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions
and 100 grid cells in x direction and 200 in y direction.
Time resolution is 1 minute and the total length of the dataset is
100 minutes around a arbitrary date (2000-01-01 12:00).
The longitude and latitude coordinates are added as 2D aux
coordinates and arbitrary, but in realisitic range.
The data contains three individual blobs travelling on a linear
trajectory through the dataset for part of the time.


	Parameters

	data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset that will be produced.
Default is ‘iris’



	Returns

	sample_data



	Return type

	iris.cube.Cube or xarray.DataArray










	
tobac.testing.make_sample_data_2D_3blobs_inv(data_type='iris')

	Create a version of the dataset with switched coordinates.

Create a version of the dataset created in the function
make_sample_cube_2D, but with switched coordinate order for the
horizontal coordinates for tests to ensure that this does not
affect the results.


	Parameters

	data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset that will be produced.
Default is ‘iris’



	Returns

	sample_data



	Return type

	iris.cube.Cube or xarray.DataArray










	
tobac.testing.make_sample_data_3D_3blobs(data_type='iris', invert_xy=False)

	Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions
and 100 grid cells in x direction and 200 in y direction.
Time resolution is 1 minute and the total length of the dataset is
100 minutes around a abritraty date (2000-01-01 12:00).
The longitude and latitude coordinates are added as 2D aux
coordinates and arbitrary, but in realisitic range.
The data contains three individual blobs travelling on a linear
trajectory through the dataset for part of the time.


	Parameters

	
	data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset that will be produced.
Default is ‘iris’


	invert_xy (bool, optional) – Flag to determine wether to switch x and y coordinates
Default is False






	Returns

	sample_data



	Return type

	iris.cube.Cube or xarray.DataArray










	
tobac.testing.make_simple_sample_data_2D(data_type='iris')

	Create a simple dataset to use in tests.

The grid has a grid spacing of 1km in both horizontal directions
and 100 grid cells in x direction and 500 in y direction.
Time resolution is 1 minute and the total length of the dataset is
100 minutes around a abritraty date (2000-01-01 12:00).
The longitude and latitude coordinates are added as 2D aux
coordinates and arbitrary, but in realisitic range.
The data contains a single blob travelling on a linear trajectory
through the dataset for part of the time.


	Parameters

	data_type ({'iris', 'xarray'}, optional) – Choose type of the dataset that will be produced.
Default is ‘iris’



	Returns

	sample_data



	Return type

	iris.cube.Cube or xarray.DataArray










	
tobac.testing.set_arr_2D_3D(in_arr, value, start_h1, end_h1, start_h2, end_h2, start_v=None, end_v=None)

	Function to set part of in_arr for either 2D or 3D points to value.
If start_v and end_v are not none, we assume that the array is 3D. If they
are none, we will set the array as if it is a 2D array.


	Parameters

	
	in_arr (array-like) – Array of values to set


	value (int, float, or array-like of size (end_v-start_v, end_h1-start_h1, end_h2-start_h2)) – The value to assign to in_arr. This will work to assign an array, but the array
must have the same dimensions as the size specified in the function.


	start_h1 (int) – Start index to set for hdim_1


	end_h1 (int) – End index to set for hdim_1 (exclusive, so it acts like [start_h1:end_h1])


	start_h2 (int) – Start index to set for hdim_2


	end_h2 (int) – End index to set for hdim_2


	start_v (int, optional) – Start index to set for vdim
Default is None


	end_v (int, optional) – End index to set for vdim
Default is None






	Returns

	in_arr with the new values set.



	Return type

	array-like











tobac.tracking module

Provide tracking methods.

The individual features and associated area/volumes identified in
each timestep have to be linked into trajectories to analyse
the time evolution of their properties for a better understanding of
the underlying physical processes.
The implementations are structured in a way that allows for the future
addition of more complex tracking methods recording a more complex
network of relationships between features at different points in
time.

References


	
tobac.tracking.add_cell_time(t)

	add cell time as time since the initiation of each cell


	Parameters

	t (pandas.DataFrame) – trajectories with added coordinates



	Returns

	t – trajectories with added cell time



	Return type

	pandas.Dataframe










	
tobac.tracking.fill_gaps(t, order=1, extrapolate=0, frame_max=None, hdim_1_max=None, hdim_2_max=None)

	Add cell time as time since the initiation of each cell.


	Parameters

	
	t (pandas.DataFrame) – Trajectories from trackpy.


	order (int, optional) – Order of polynomial used to extrapolate trajectory into
gaps and beyond start and end point. Default is 1.


	extrapolate (int, optional) – Number or timesteps to extrapolate trajectories. Default is 0.


	frame_max (int, optional) – Size of input data along time axis. Default is None.


	hdim2_max (hdim_1_max,) – Size of input data along first and second horizontal axis.
Default is None.






	Returns

	t – Trajectories from trackpy with with filled gaps and potentially
extrapolated.



	Return type

	pandas.DataFrame










	
tobac.tracking.linking_trackpy(features, field_in, dt, dxy, v_max=None, d_max=None, d_min=None, subnetwork_size=None, memory=0, stubs=1, time_cell_min=None, order=1, extrapolate=0, method_linking='random', adaptive_step=None, adaptive_stop=None, cell_number_start=1, cell_number_unassigned=-1)

	Perform Linking of features in trajectories.

The linking determines which of the features detected in a specific
timestep is most likely identical to an existing feature in the
previous timestep. For each existing feature, the movement within
a time step is extrapolated based on the velocities in a number
previous time steps. The algorithm then breaks the search process
down to a few candidate features by restricting the search to a
circular search region centered around the predicted position of
the feature in the next time step. For newly initialized trajectories,
where no velocity from previous time steps is available, the
algorithm resorts to the average velocity of the nearest tracked
objects. v_max and d_min are given as physical quantities and then
converted into pixel-based values used in trackpy. This allows for
tracking that is controlled by physically-based parameters that are
independent of the temporal and spatial resolution of the input
data. The algorithm creates a continuous track for the feature
that is the most probable based on the previous cell path.


	Parameters

	
	features (pandas.DataFrame) – Detected features to be linked.


	field_in (xarray.DataArray) – Input field to perform the watershedding on (2D or 3D for one
specific point in time).


	dt (float) – Time resolution of tracked features.


	dxy (float) – Grid spacing of the input data.


	d_max (float, optional) – Maximum search range
Default is None.


	d_min (float, optional) – Variations in the shape of the regions used to determine the
positions of the features can lead to quasi-instantaneous shifts
of the position of the feature by one or two grid cells even for
a very high temporal resolution of the input data, potentially
jeopardising the tracking procedure. To prevent this, tobac uses
an additional minimum radius of the search range.
Default is None.


	subnetwork_size (int, optional) – Maximum size of subnetwork for linking. This parameter should be
adjusted when using adaptive search. Usually a lower value is desired
in that case. For a more in depth explanation have look
here [https://soft-matter.github.io/trackpy/v0.5.0/tutorial/adaptive-search.html]
If None, 30 is used for regular search and 15 for adaptive search.
Default is None.


	v_max (float, optional) – Speed at which features are allowed to move. Default is None.


	memory (int, optional) – Number of output timesteps features allowed to vanish for to
be still considered tracked. Default is 0.
.. warning :: This parameter should be used with caution, as it


can lead to erroneous trajectory linking,
espacially for data with low time resolution.







	stubs (int, optional) – Minimum number of timesteps of a tracked cell to be reported
Default is 1


	time_cell_min (float, optional) – Minimum length in time of tracked cell to be reported in minutes
Default is None.


	order (int, optional) – Order of polynomial used to extrapolate trajectory into gaps and
ond start and end point.
Default is 1.


	extrapolate (int, optional) – Number or timesteps to extrapolate trajectories.
Default is 0.


	method_linking ({'random', 'predict'}, optional) – Flag choosing method used for trajectory linking.
Default is ‘random’.


	adaptive_step (float, optional) – Reduce search range by multiplying it by this factor. Needs to be
used in combination with adaptive_stop. Default is None.


	adaptive_stop (float, optional) – If not None, when encountering an oversize subnet, retry by progressively
reducing search_range by multiplying with adaptive_step until the subnet
is solvable. If search_range becomes <= adaptive_stop, give up and raise
a SubnetOversizeException. Needs to be used in combination with
adaptive_step. Default is None.


	cell_number_start (int, optional) – Cell number for first tracked cell.
Default is 1


	cell_number_unassigned (int) – Number to set the unassigned/non-tracked cells to. Note that if you set this
to np.nan, the data type of ‘cell’ will change to float.
Default is -1






	Returns

	trajectories_final – Dataframe of the linked features, containing the variable ‘cell’,
with integers indicating the affiliation of a feature to a specific
track, and the variable ‘time_cell’ with the time the cell has
already existed.



	Return type

	pandas.DataFrame



	Raises

	ValueError – If method_linking is neither ‘random’ nor ‘predict’.











tobac.utils module


	
tobac.utils.add_coordinates(t, variable_cube)

	Add coordinates from the input cube of the feature detection
to the trajectories/features.


	Parameters

	
	t (pandas.DataFrame) – Trajectories/features from feature detection or linking step.


	variable_cube (iris.cube.Cube) – Input data used for the tracking with coordinate information
to transfer to the resulting DataFrame. Needs to contain the
coordinate ‘time’.






	Returns

	t – Trajectories with added coordinates.



	Return type

	pandas.DataFrame










	
tobac.utils.column_mask_from2D(mask_2D, cube, z_coord='model_level_number')

	Turn 2D watershedding mask into a 3D mask of selected columns.


	Parameters

	
	cube (iris.cube.Cube) – Data cube.


	mask_2D (iris.cube.Cube) – 2D cube containing mask (int id for tacked volumes 0
everywhere else).


	z_coord (str) – Name of the vertical coordinate in the cube.






	Returns

	mask_2D – 3D cube containing columns of 2D mask (int id for tracked
volumes, 0 everywhere else).



	Return type

	iris.cube.Cube










	
tobac.utils.combine_tobac_feats(list_of_feats, preserve_old_feat_nums=None)

	Function to combine a list of tobac feature detection dataframes
into one combined dataframe that can be used for tracking
or segmentation.


	Parameters

	
	list_of_feats (array-like of Pandas DataFrames) – A list of dataframes (generated, for example, by
running feature detection on multiple nodes).


	preserve_old_feat_nums (str or None) – The column name to preserve old feature numbers in. If None, these
old numbers will be deleted. Users may want to enable this feature
if they have run segmentation with the separate dataframes and
therefore old feature numbers.






	Returns

	One combined DataFrame.



	Return type

	pd.DataFrame










	
tobac.utils.compress_all(nc_grids, min_dims=2, comp_level=4)

	The purpose of this subroutine is to compress the netcdf variables as they are saved.
This does not change the data, but sets netcdf encoding parameters.
We allocate a minimum number of dimensions as variables with dimensions
under the minimum value do not benefit from tangibly from this encoding.


	Parameters

	
	nc_grids (xarray.core.dataset.Dataset) – Xarray dataset that is intended to be exported as netcdf


	min_dims (integer) – The minimum number of dimesnions, in integer value, a variable must have in order
set the netcdf compression encoding.


	comp_level (integer) – The level of compression. Default values is 4.






	Returns

	nc_grids – Xarray dataset with netcdf compression encoding for variables with two (2) or more dimensions



	Return type

	xarray.core.dataset.Dataset










	
tobac.utils.get_bounding_box(x, buffer=1)

	Finds the bounding box of a ndarray, i.e. the smallest
bounding rectangle for nonzero values as explained here:
https://stackoverflow.com/questions/31400769/bounding-box-of-numpy-array


	Parameters

	
	x (numpy.ndarray) – Array for which the bounding box is to be determined.


	buffer (int, optional) – Number to set a buffer between the nonzero values and
the edges of the box. Default is 1.






	Returns

	bbox – Dimensionwise list of the indices representing the edges
of the bounding box.



	Return type

	list










	
tobac.utils.get_indices_of_labels_from_reg_prop_dict(region_property_dict)

	Function to get the x and y indices (as well as point count) of
all labeled regions.


	Parameters

	region_property_dict (dict of region_property objects) – This dict should come from the get_label_props_in_dict function.



	Returns

	
	curr_loc_indices (dict) – The number of points in the label number (key: label number).


	y_indices (dict) – The y indices in the label number (key: label number).


	x_indices (dict) – The x indices in the label number (key: label number).








	Raises

	ValueError – A ValueError is raised if there are no regions in the region
property dict.










	
tobac.utils.get_label_props_in_dict(labels)

	Function to get the label properties into a dictionary format.


	Parameters

	labels (2D array-like) – Output of the skimage.measure.label function.



	Returns

	region_properties_dict – Output from skimage.measure.regionprops in dictionary
format, where they key is the label number.



	Return type

	dict










	
tobac.utils.get_spacings(field_in, grid_spacing=None, time_spacing=None)

	Determine spatial and temporal grid spacing of the
input data.


	Parameters

	
	field_in (iris.cube.Cube) – Input field where to get spacings.


	grid_spacing (float, optional) – Manually sets the grid spacing if specified.
Default is None.


	time_spacing (float, optional) – Manually sets the time spacing if specified.
Default is None.






	Returns

	
	dxy (float) – Grid spacing in metres.


	dt (float) – Time resolution in seconds.








	Raises

	ValueError – If input_cube does not contain projection_x_coord and
projection_y_coord or keyword argument grid_spacing.










	
tobac.utils.mask_all_surface(mask, masked=False, z_coord='model_level_number')

	Create surface projection of 3d-mask for all features
by collapsing one coordinate.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False


	z_coord (str, optional) – Name of the coordinate to collapse. Default is
‘model_level_number’.






	Returns

	mask_i_surface – Collapsed Masked cube for the features with the maximum value
along the collapsed coordinate.



	Return type

	iris.cube.Cube (2D)










	
tobac.utils.mask_cell(mask, cell, track, masked=False)

	Create mask for specific cell.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes 0 everywhere
else).


	cell (int) – Integer id of cell to create masked cube for.


	track (pandas.DataFrame) – Output of the linking.


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False.






	Returns

	mask_i – Mask for a specific cell.



	Return type

	numpy.ndarray










	
tobac.utils.mask_cell_columns(mask, cell, track, masked=False, z_coord='model_level_number')

	Create mask with entire columns for individual cell.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).


	cell (int) – Interger id of cell to create the masked cube for.


	track (pandas.DataFrame) – Output of the linking.


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False.


	z_coord (str, optional) – Default is ‘model_level_number’.






	Returns

	mask_i – Masked cube for untracked volume.



	Return type

	iris.cube.Cube





Notes

Function is not working since mask_features_columns()
is commented out






	
tobac.utils.mask_cell_surface(mask, cell, track, masked=False, z_coord='model_level_number')

	Create surface projection of 3d-mask for individual cell by
collapsing one coordinate.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0 everywhere
else).


	cell (int) – Integer id of cell to create masked cube for.


	track (pandas.DataFrame) – Output of the linking.


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False.


	z_coord (str, optional) – Name of the coordinate to collapse. Default is ‘model_level_number’.






	Returns

	mask_i_surface – Collapsed Masked cube for the cell with the maximum value
along the collapsed coordinate.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_cube(cube_in, mask)

	Mask cube where mask is not zero.


	Parameters

	
	cube_in (iris.cube.Cube) – Unmasked data cube.


	mask (iris.cube.Cube) – Mask to use for masking, >0 where cube is supposed to be masked.






	Returns

	variable_cube_out – Masked cube.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_cube_all(variable_cube, mask)

	Mask cube (iris.cube) for tracked volume.


	Parameters

	
	variable_cube (iris.cube.Cube) – Unmasked data cube.


	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).






	Returns

	variable_cube_out – Masked cube for untracked volume.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_cube_cell(variable_cube, mask, cell, track)

	Mask cube for tracked volume of an individual cell.


	Parameters

	
	variable_cube (iris.cube.Cube) – Unmasked data cube.


	mask (iris.cube.Cube) – Cube containing mask (int id for tracked volumes, 0 everywhere
else).


	cell (int) – Integer id of cell to create masked cube for.


	track (pandas.DataFrame) – Output of the linking.






	Returns

	variable_cube_out – Masked cube with data for respective cell.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_cube_features(variable_cube, mask, feature_ids)

	Mask cube for tracked volume of one or more specific
features.


	Parameters

	
	variable_cube (iris.cube.Cube) – Unmasked data cube.


	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes, 0 everywhere
else).


	feature_ids (int or list of ints) – Integer ids of features to create masked cube for.






	Returns

	variable_cube_out – Masked cube with data for respective features.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_cube_untracked(variable_cube, mask)

	Mask cube (iris.cube) for untracked volume.


	Parameters

	
	variable_cube (iris.cube.Cube) – Unmasked data cube.


	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).






	Returns

	variable_cube_out – Masked cube for untracked volume.



	Return type

	iris.cube.Cube










	
tobac.utils.mask_features(mask, feature_ids, masked=False)

	Create mask for specific features.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).


	feature_ids (int or list of ints) – Integer ids of the features to create the masked cube for.


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False.






	Returns

	mask_i – Masked cube for specific features.



	Return type

	numpy.ndarray










	
tobac.utils.mask_features_surface(mask, feature_ids, masked=False, z_coord='model_level_number')

	Create surface projection of 3d-mask for specific features
by collapsing one coordinate.


	Parameters

	
	mask (iris.cube.Cube) – Cube containing mask (int id for tacked volumes 0 everywhere
else).


	feature_ids (int or list of ints) – Integer ids of the features to create the masked cube for.


	masked (bool, optional) – Bool determining whether to mask the mask for the cell where
it is 0. Default is False


	z_coord (str, optional) – Name of the coordinate to collapse. Default is
‘model_level_number’.






	Returns

	mask_i_surface – Collapsed Masked cube for the features with the maximum value
along the collapsed coordinate.



	Return type

	iris.cube.Cube










	
tobac.utils.spectral_filtering(dxy, field_in, lambda_min, lambda_max, return_transfer_function=False)

	This function creates and applies a 2D transfer function that
can be used as a bandpass filter to remove certain wavelengths
of an atmospheric input field (e.g. vorticity, IVT, etc).


	dxyfloat

	Grid spacing in m.



	field_in: numpy.array

	2D field with input data.



	lambda_min: float

	Minimum wavelength in m.



	lambda_max: float

	Maximum wavelength in m.



	return_transfer_function: boolean, optional

	default: False. If set to True, then the 2D transfer function and
the corresponding wavelengths are returned.






	filtered_field: numpy.array

	Spectrally filtered 2D field of data (with same shape as input data).



	transfer_function: tuple

	Two 2D fields, where the first one corresponds to the wavelengths
in the spectral space of the domain and the second one to the 2D
transfer function of the bandpass filter. Only returned, if
return_transfer_function is True.










	
tobac.utils.standardize_track_dataset(TrackedFeatures, Mask, Projection=None)

	CAUTION: this function is experimental. No data structures output are guaranteed to be supported in future versions of tobac.

Combine a feature mask with the feature data table into a common dataset.

returned by tobac.segmentation
with the TrackedFeatures dataset returned by tobac.linking_trackpy.

Also rename the variables to be more descriptive and comply with cf-tree.

Convert the default cell parent ID  to an integer table.

Add a cell dimension to reflect

Projection is an xarray DataArray

TODO: Add metadata attributes


	Parameters

	
	TrackedFeatures (xarray.core.dataset.Dataset) – xarray dataset of tobac Track information, the xarray dataset returned by tobac.tracking.linking_trackpy


	Mask (xarray.core.dataset.Dataset) – xarray dataset of tobac segmentation mask information, the xarray dataset returned
by tobac.segmentation.segmentation









	Projectionxarray.core.dataarray.DataArray, default = None

	array.DataArray of the original input dataset (gridded nexrad data for example).
If using gridded nexrad data, this can be input as: data[‘ProjectionCoordinateSystem’]
An example of the type of information in the dataarray includes the following attributes:
latitude_of_projection_origin :29.471900939941406
longitude_of_projection_origin :-95.0787353515625
_CoordinateTransformType :Projection
_CoordinateAxes :x y z time
_CoordinateAxesTypes :GeoX GeoY Height Time
grid_mapping_name :azimuthal_equidistant
semi_major_axis :6370997.0
inverse_flattening :298.25
longitude_of_prime_meridian :0.0
false_easting :0.0
false_northing :0.0






	Returns

	ds – xarray dataset of merged Track and Segmentation Mask datasets with renamed variables.



	Return type

	xarray.core.dataset.Dataset











tobac.wrapper module


	
tobac.wrapper.maketrack(field_in, grid_spacing=None, time_spacing=None, target='maximum', v_max=None, d_max=None, memory=0, stubs=5, order=1, extrapolate=0, method_detection='threshold', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, threshold=1, min_num=0, min_distance=0, method_linking='random', cell_number_start=1, subnetwork_size=None, adaptive_stop=None, adaptive_step=None, return_intermediate=False)

	




	
tobac.wrapper.tracking_wrapper(field_in_features, field_in_segmentation, time_spacing=None, grid_spacing=None, parameters_features=None, parameters_tracking=None, parameters_segmentation=None)
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