
tobac
Release v2.0-dev

May 13, 2022

Contents

1 Installation 3

2 *Data input and output 5

3 tobac themes 7

4 Analysis 9

5 Plotting 11

6 Example notebooks 13

7 API reference 15
7.1 Core Modules . 15
7.2 Theme Modules: Tobac v1 . 15

i

ii

tobac, Release v2.0-dev

tobac is a Python package to identify, track and analyse clouds in different types of gridded datasets, such as 3D model
output from cloud resolving model simulations or 2D data from satellite retrievals.

The software is set up in a modular way to include different algorithms for feature identification, tracking and analyses.
In the current implementation, individual features are indentified as either maxima or minima in a two dimensional
time varying field. The volume/are associated with the identified object can be determined based on a time-varying
2D or 3D field and a threshold value. In the tracking step, the identified objects are linked into consistent trajectories
representing the cloud over its lifecycle. Analysis and visualisation methods provide a convenient way to use and
display the tracking results.

Version 1.2 of tobac and some example applications are described in a paper in the journal Geoscientific Model
Development as:

Heikenfeld, M., Marinescu, P. J., Christensen, M., Watson-Parris, D., Senf, F., van den Heever, S. C., and Stier, P.:
tobac v1.2: towards a flexible framework for tracking and analysis of clouds in diverse datasets, Geosci. Model Dev.,
https://doi.org/10.5194/gmd-12-4551-2019 , 2019.

The project is currently extended by several contributors to include additional workflows and algorithms using the
same structure, synthax and data formats.

Contents 1

https://doi.org/10.5194/gmd-12-4551-2019

tobac, Release v2.0-dev

2 Contents

CHAPTER 1

Installation

tobac is now capable of working with both Python 2 and Python 3 (tested for Python 2.7, 3.6, 3.7 and 3.8) installations.

The easiest way is to install the most recent version of tobac via conda and the conda-forge channel:

` conda install -c conda-forge tobac `

This will take care of all necessary dependencies and should do the job for most users and also allows for an easy
update of the installation by

` conda update -c conda-forge tobac `

You can also install conda via pip, which is mainly interesting for development purposed or to use specific development
branches for the Github repository.

The follwoing python packages are required (including dependencies of these packages):

trackpy, scipy, numpy, iris, scikit-learn, scikit-image, cartopy, pandas, pytables

If you are using anaconda, the following command should make sure all dependencies are met and up to date:
conda install -c conda-forge -y trackpy scipy numpy iris scikit-learn
scikit-image cartopy pandas pytables

You can directly install the package directly from github with pip and either of the two following commands:

pip install --upgrade git+ssh://git@github.com/climate-processes/
tobac.git

pip install --upgrade git+https://github.com/climate-processes/tobac.
git

You can also clone the package with any of the two following commands:

git clone git@github.com:climate-processes/tobac.git

git clone https://github.com/climate-processes/tobac.git

and install the package from the locally cloned version (The trailing slash is actually necessary):

pip install --upgrade tobac/

3

tobac, Release v2.0-dev

4 Chapter 1. Installation

CHAPTER 2

*Data input and output

Input data for tobac should consist of one or more fields on a common, regular grid with a time dimension and two or
more spatial dimensions. The input data should also include latitude and longitude coordinates, either as 1-d or 2-d
variables depending on the grid used.

Interoperability with Iris and pandas is provided by the convenient functions allowing for a transformation between
the data types. xarray DataArays can be easily converted into iris cubes using xarray’s to__iris() method, while the
Iris cubes produced as output of tobac can be turned into xarray DataArrays using the from__iris() method.

For the future development of the next major version of tobac, we are envisaging moving the basic data structures
from Iris cubes to xarray DataArrays for improved computing performance and interoperability with other open-source
sorftware packages.

The output of the different analysis steps in tobac are output as either pandas DataFrames in the case of one-
dimensional data, such a lists of identified features or cloud trajectories or as Iris cubes in the case of 2D/3D/4D
fields such as cloud masks. Note that the dataframe output from tracking is a superset of the features dataframe.

(quick note on terms; “feature” is a detected object at a single time step. “cell” is a series of features linked together
over multiple timesteps)

Overview of the output dataframe from feature_dection

• Frame: the index along the time dimension in which the feature was detected

• hdim_1, hdim_2. . . : the central index location of the feature in the spatial dimensions of the input data

• num: the number of connected pixels that meet the threshold for detection for this feature

• threshold_value: the threshold value that was used to detect this feature. When using fea-
ture_detection_multithreshold this is the max/min (depending on whether the threshold values are increas-
ing (e.g. precip) or decreasing (e.g. temperature) with intensity) threshold value used.

• feature: a unique integer >0 value corresponding to each feature

• time: the date and time of the feature, in datetime format

• timestr: the date and time of the feature in string format

• latitude, longitude: the central lat/lon of the feature

5

http://xarray.pydata.org/en/stable/generated/xarray.DataArray.to_iris.html
http://xarray.pydata.org/en/stable/generated/xarray.DataArray.from_iris.html

tobac, Release v2.0-dev

• x,y, etc: these are the central location of the feature in the original dataset coordinates

Also in the tracked output:

• Cell: The cell which each feature belongs to. Is nan if the feature could not be linked into a valid trajectory

• time_cell: The time of the feature along the tracked cell, in numpy.timedelta64[ns] format

The output from segmentation is an n-dimensional array produced by segmentation in the same coordinates of the
input data. It has a single field, which provides a mask for the pixels in the data which are linked to each detected
feature by the segmentation routine. Each non-zero value in the array provides the integer value of the feature which
that region is attributed to.

Note that in future versions of tobac, it is planned to combine both output data types into a single hierarchical data
structure containing both spatial and object information. Additional information about the planned changes can be
found in the v2.0-dev project, as well as the tobac roadmap

6 Chapter 2. *Data input and output

CHAPTER 3

tobac themes

Starting from version 2.0 tobac includes several so called themes that group together specific workflows or approaches.
One of the themes (tobac_v1) includes the routines from tobac 1.x that are also decribed in the ACP paper.

Currently included themes:

tobac_v1

7

tobac, Release v2.0-dev

8 Chapter 3. tobac themes

CHAPTER 4

Analysis

tobac provides several analysis functions that allow for the calculation of important quantities based on the tracking
results. This includes the calculation of important properties of the tracked objects such as cloud lifetimes, cloud
areas/volumes, but also allows for a convenient calculation of statistics for arbitratry fields of the same shape as as the
input data used for the tracking analysis.

9

tobac, Release v2.0-dev

10 Chapter 4. Analysis

CHAPTER 5

Plotting

tobac provides functions to conveniently visualise the tracking results and analyses.

11

tobac, Release v2.0-dev

12 Chapter 5. Plotting

CHAPTER 6

Example notebooks

tobac is provided with a set of Jupyter notebooks that show examples of the application of tobac for different types of
datasets.

The notebooks can be found in a separate repository:

https://github.com/climate-processes/tobac-tutorials

The necessary input data for these examples is avaliable on zenodo: www.zenodo.org/. . . and can be downloaded
automatically by the Jupyter notebooks.

The examples currently include four different applications of tobac: 1. Tracking of scattered convection based on
vertical velocity and condensate mixing ratio for 3D cloud-resolving model output. 2. Tracking of scattered convection
based on surface precipitation from the same cloud-resolving model output 3. Tracking of convective clouds based
on outgoing longwave radiation (OLR) for convection-permitting model simulation output 4. Tracking of convective
clouds based on OLR in geostationary satellite retrievals.

13

https://github.com/climate-processes/tobac-tutorials

tobac, Release v2.0-dev

14 Chapter 6. Example notebooks

CHAPTER 7

API reference

7.1 Core Modules

tobac.analysis.analysis
tobac.analysis.centerofgravity
tobac.plot.plotting
tobac.utils

7.2 Theme Modules: Tobac v1

tobac.themes.tobac_v1.
feature_detection
tobac.themes.tobac_v1.segmentation
tobac.themes.tobac_v1.tracking
tobac.themes.tobac_v1.wrapper

15

	Installation
	red*Data input and output
	tobac themes
	Analysis
	Plotting
	Example notebooks
	API reference
	Core Modules
	Theme Modules: Tobac v1

